Files
mdlp/src/Discretizer.cpp
Ricardo Montañana Gómez e36d9af8f9 Fix BinDisc quantile mistakes (#9)
* Fix BinDisc quantile mistakes

* Fix FImdlp tests

* Fix tests, samples and remove uneeded support files

* Add coypright header to sources
Fix coverage report
Add coverage badge to README

* Update sonar github action

* Move sources to a folder and change ArffFiles files to library

* Add recursive submodules to github action
2024-07-04 17:27:39 +02:00

54 lines
2.2 KiB
C++

// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include "Discretizer.h"
namespace mdlp {
labels_t& Discretizer::transform(const samples_t& data)
{
discretizedData.clear();
discretizedData.reserve(data.size());
// CutPoints always have at least two items
// Have to ignore first and last cut points provided
auto first = cutPoints.begin() + 1;
auto last = cutPoints.end() - 1;
auto bound = direction == bound_dir_t::LEFT ? std::lower_bound<std::vector<precision_t>::iterator, precision_t> : std::upper_bound<std::vector<precision_t>::iterator, precision_t>;
for (const precision_t& item : data) {
auto pos = bound(first, last, item);
auto number = pos - first;
discretizedData.push_back(static_cast<label_t>(number));
}
return discretizedData;
}
labels_t& Discretizer::fit_transform(samples_t& X_, labels_t& y_)
{
fit(X_, y_);
return transform(X_);
}
void Discretizer::fit_t(const torch::Tensor& X_, const torch::Tensor& y_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
fit(X, y);
}
torch::Tensor Discretizer::transform_t(const torch::Tensor& X_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
auto result = transform(X);
return torch::tensor(result, torch_label_t);
}
torch::Tensor Discretizer::fit_transform_t(const torch::Tensor& X_, const torch::Tensor& y_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
auto result = fit_transform(X, y);
return torch::tensor(result, torch_label_t);
}
}