Files
mdlp/src/BinDisc.cpp

129 lines
5.0 KiB
C++

// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include <algorithm>
#include <cmath>
#include "BinDisc.h"
#include <iostream>
#include <string>
namespace mdlp {
BinDisc::BinDisc(int n_bins, strategy_t strategy) :
Discretizer(), n_bins{ n_bins }, strategy{ strategy }
{
if (n_bins < 3) {
throw std::invalid_argument("n_bins must be greater than 2");
}
}
BinDisc::~BinDisc() = default;
void BinDisc::fit(samples_t& X)
{
// Input validation
if (X.empty()) {
throw std::invalid_argument("Input data X cannot be empty");
}
if (X.size() < static_cast<size_t>(n_bins)) {
throw std::invalid_argument("Input data size must be at least equal to n_bins");
}
cutPoints.clear();
if (strategy == strategy_t::QUANTILE) {
direction = bound_dir_t::RIGHT;
fit_quantile(X);
} else if (strategy == strategy_t::UNIFORM) {
direction = bound_dir_t::RIGHT;
fit_uniform(X);
}
}
void BinDisc::fit(samples_t& X, labels_t& y)
{
// Input validation for supervised interface
if (X.size() != y.size()) {
throw std::invalid_argument("X and y must have the same size");
}
if (X.empty() || y.empty()) {
throw std::invalid_argument("X and y cannot be empty");
}
// BinDisc is inherently unsupervised, but we validate inputs for consistency
// Note: y parameter is validated but not used in binning strategy
fit(X);
}
std::vector<precision_t> linspace(precision_t start, precision_t end, int num)
{
// Input validation
if (num < 2) {
throw std::invalid_argument("Number of points must be at least 2 for linspace");
}
if (std::isnan(start) || std::isnan(end)) {
throw std::invalid_argument("Start and end values cannot be NaN");
}
if (std::isinf(start) || std::isinf(end)) {
throw std::invalid_argument("Start and end values cannot be infinite");
}
if (start == end) {
return { start, end };
}
precision_t delta = (end - start) / static_cast<precision_t>(num - 1);
std::vector<precision_t> linspc;
for (size_t i = 0; i < num; ++i) {
precision_t val = start + delta * static_cast<precision_t>(i);
linspc.push_back(val);
}
return linspc;
}
size_t clip(const size_t n, const size_t lower, const size_t upper)
{
return std::max(lower, std::min(n, upper));
}
std::vector<precision_t> percentile(samples_t& data, const std::vector<precision_t>& percentiles)
{
// Input validation
if (data.empty()) {
throw std::invalid_argument("Data cannot be empty for percentile calculation");
}
if (percentiles.empty()) {
throw std::invalid_argument("Percentiles cannot be empty");
}
// Implementation taken from https://dpilger26.github.io/NumCpp/doxygen/html/percentile_8hpp_source.html
std::vector<precision_t> results;
bool first = true;
results.reserve(percentiles.size());
for (auto percentile : percentiles) {
const auto i = static_cast<size_t>(std::floor(static_cast<precision_t>(data.size() - 1) * percentile / 100.));
const auto indexLower = clip(i, 0, data.size() - 2);
const precision_t percentI = static_cast<precision_t>(indexLower) / static_cast<precision_t>(data.size() - 1);
const precision_t fraction =
(percentile / 100.0 - percentI) /
(static_cast<precision_t>(indexLower + 1) / static_cast<precision_t>(data.size() - 1) - percentI);
if (const auto value = data[indexLower] + (data[indexLower + 1] - data[indexLower]) * fraction; value != results.back() || first) // first needed as results.back() return is undefined for empty vectors
results.push_back(value);
first = false;
}
return results;
}
void BinDisc::fit_quantile(const samples_t& X)
{
auto quantiles = linspace(0.0, 100.0, n_bins + 1);
auto data = X;
std::sort(data.begin(), data.end());
if (data.front() == data.back() || data.size() == 1) {
// if X is constant, pass any two given points that shall be ignored in transform
cutPoints.push_back(data.front());
cutPoints.push_back(data.front());
return;
}
cutPoints = percentile(data, quantiles);
}
void BinDisc::fit_uniform(const samples_t& X)
{
auto [vmin, vmax] = std::minmax_element(X.begin(), X.end());
cutPoints = linspace(*vmin, *vmax, n_bins + 1);
}
}