Files
mdlp/tests/FImdlp_unittest.cpp
Ricardo Montañana Gómez 6d8b55a808 Fix conan (#10)
* Fix debug conan build target

* Add viewcoverage and fix coverage generation

* Add more tests to cover new integrity checks

* Add tests to accomplish 100%

* Fix conan-create makefile target
2025-07-02 20:09:34 +02:00

428 lines
15 KiB
C++

// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include <fstream>
#include <iostream>
#include <ArffFiles.hpp>
#include "gtest/gtest.h"
#include "Metrics.h"
#include "CPPFImdlp.h"
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
try { \
stmt; \
} catch (const etype& ex) { \
EXPECT_EQ(whatstring, std::string(ex.what())); \
throw; \
} \
, etype)
namespace mdlp {
class TestFImdlp : public CPPFImdlp, public testing::Test {
public:
precision_t precision = 0.000001f;
TestFImdlp() : CPPFImdlp() {}
string data_path;
void SetUp() override
{
X = { 4.7f, 4.7f, 4.7f, 4.7f, 4.8f, 4.8f, 4.8f, 4.8f, 4.9f, 4.95f, 5.7f, 5.3f, 5.2f, 5.1f, 5.0f, 5.6f, 5.1f,
6.0f, 5.1f, 5.9f };
y = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
fit(X, y);
data_path = set_data_path();
}
static string set_data_path()
{
string path = "datasets/";
ifstream file(path + "iris.arff");
if (file.is_open()) {
file.close();
return path;
}
return "tests/datasets/";
}
void checkSortedVector()
{
indices_t testSortedIndices = sortIndices(X, y);
precision_t prev = X[testSortedIndices[0]];
for (unsigned long i = 0; i < X.size(); ++i) {
EXPECT_EQ(testSortedIndices[i], indices[i]);
EXPECT_LE(prev, X[testSortedIndices[i]]);
prev = X[testSortedIndices[i]];
}
}
void checkCutPoints(cutPoints_t& computed, cutPoints_t& expected) const
{
EXPECT_EQ(computed.size(), expected.size());
for (unsigned long i = 0; i < computed.size(); i++) {
// cout << "(" << computed[i] << ", " << expected[i] << ") ";
EXPECT_NEAR(computed[i], expected[i], precision);
}
}
bool test_result(const samples_t& X_, size_t cut, float midPoint, size_t limit, const string& title)
{
pair<precision_t, size_t> result;
labels_t y_ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
X = X_;
y = y_;
indices = sortIndices(X, y);
// cout << "* " << title << endl;
result = valueCutPoint(0, cut, 10);
EXPECT_NEAR(result.first, midPoint, precision);
EXPECT_EQ(result.second, limit);
return true;
}
void test_dataset(CPPFImdlp& test, const string& filename, vector<cutPoints_t>& expected,
vector<int>& depths) const
{
ArffFiles file;
file.load(data_path + filename + ".arff", true);
vector<samples_t>& X = file.getX();
labels_t& y = file.getY();
auto attributes = file.getAttributes();
for (auto feature = 0; feature < attributes.size(); feature++) {
test.fit(X[feature], y);
EXPECT_EQ(test.get_depth(), depths[feature]);
auto computed = test.getCutPoints();
// cout << "Feature " << feature << ": ";
checkCutPoints(computed, expected[feature]);
// cout << endl;
}
}
};
TEST_F(TestFImdlp, FitErrorEmptyDataset)
{
X = samples_t();
y = labels_t();
EXPECT_THROW_WITH_MESSAGE(fit(X, y), invalid_argument, "X and y must have at least one element");
}
TEST_F(TestFImdlp, FitErrorDifferentSize)
{
X = { 1, 2, 3 };
y = { 1, 2 };
EXPECT_THROW_WITH_MESSAGE(fit(X, y), invalid_argument, "X and y must have the same size: " + std::to_string(X.size()) + " != " + std::to_string(y.size()));
}
TEST_F(TestFImdlp, FitErrorMinLength)
{
EXPECT_THROW_WITH_MESSAGE(CPPFImdlp(2, 10, 0), invalid_argument, "min_length must be greater than 2");
}
TEST_F(TestFImdlp, FitErrorMaxDepth)
{
EXPECT_THROW_WITH_MESSAGE(CPPFImdlp(3, 0, 0), invalid_argument, "max_depth must be greater than 0");
}
TEST_F(TestFImdlp, JoinFit)
{
samples_t X_ = { 1, 2, 2, 3, 4, 2, 3 };
labels_t y_ = { 0, 0, 1, 2, 3, 4, 5 };
cutPoints_t expected = { 1.0, 1.5f, 2.5f, 4.0 };
fit(X_, y_);
auto computed = getCutPoints();
EXPECT_EQ(computed.size(), expected.size());
checkCutPoints(computed, expected);
}
TEST_F(TestFImdlp, FitErrorMinCutPoints)
{
EXPECT_THROW_WITH_MESSAGE(CPPFImdlp(3, 10, -1), invalid_argument, "proposed_cuts must be non-negative");
}
TEST_F(TestFImdlp, FitErrorMaxCutPoints)
{
auto test = CPPFImdlp(3, 1, 8);
samples_t X_ = { 1, 2, 2, 3, 4, 2, 3 };
labels_t y_ = { 0, 0, 1, 2, 3, 4, 5 };
EXPECT_THROW_WITH_MESSAGE(test.fit(X_, y_), invalid_argument, "wrong proposed num_cuts value");
}
TEST_F(TestFImdlp, SortIndices)
{
X = { 5.7f, 5.3f, 5.2f, 5.1f, 5.0f, 5.6f, 5.1f, 6.0f, 5.1f, 5.9f };
y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
indices = { 4, 3, 6, 8, 2, 1, 5, 0, 9, 7 };
checkSortedVector();
X = { 5.77f, 5.88f, 5.99f };
y = { 1, 2, 1 };
indices = { 0, 1, 2 };
checkSortedVector();
X = { 5.33f, 5.22f, 5.11f };
y = { 1, 2, 1 };
indices = { 2, 1, 0 };
checkSortedVector();
X = { 5.33f, 5.22f, 5.33f };
y = { 2, 2, 1 };
indices = { 1, 2, 0 };
}
TEST_F(TestFImdlp, SortIndicesOutOfBounds)
{
// Test for out of bounds exception in sortIndices
samples_t X_long = { 1.0f, 2.0f, 3.0f };
labels_t y_short = { 1, 2 };
EXPECT_THROW_WITH_MESSAGE(sortIndices(X_long, y_short), std::out_of_range, "Index out of bounds in sort comparison");
}
TEST_F(TestFImdlp, TestShortDatasets)
{
vector<precision_t> computed;
X = { 1 };
y = { 1 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 2);
X = { 1, 3 };
y = { 1, 2 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 2);
X = { 2, 4 };
y = { 1, 2 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 2);
X = { 1, 2, 3 };
y = { 1, 2, 2 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 3);
EXPECT_NEAR(computed[0], 1, precision);
EXPECT_NEAR(computed[1], 1.5, precision);
EXPECT_NEAR(computed[2], 3, precision);
}
TEST_F(TestFImdlp, TestArtificialDataset)
{
fit(X, y);
cutPoints_t expected = { 4.7, 5.05, 6.0 };
vector<precision_t> computed = getCutPoints();
EXPECT_EQ(computed.size(), expected.size());
for (unsigned long i = 0; i < computed.size(); i++) {
EXPECT_NEAR(computed[i], expected[i], precision);
}
}
TEST_F(TestFImdlp, TestIris)
{
vector<cutPoints_t> expected = {
{4.3, 5.45f, 5.75f, 7.9},
{2, 2.75f, 2.85f, 2.95f, 3.05f, 3.35f, 4.4},
{1, 2.45f, 4.75f, 5.05f, 6.9},
{0.1, 0.8f, 1.75f, 2.5}
};
vector<int> depths = { 3, 5, 4, 3 };
auto test = CPPFImdlp();
test_dataset(test, "iris", expected, depths);
}
TEST_F(TestFImdlp, ComputeCutPointsGCase)
{
cutPoints_t expected;
expected = { 0, 1.5, 2 };
samples_t X_ = { 0, 1, 2, 2, 2 };
labels_t y_ = { 1, 1, 1, 2, 2 };
fit(X_, y_);
auto computed = getCutPoints();
checkCutPoints(computed, expected);
}
TEST_F(TestFImdlp, ValueCutPoint)
{
// Case titles as stated in the doc
samples_t X1a{ 3.1f, 3.2f, 3.3f, 3.4f, 3.5f, 3.6f, 3.7f, 3.8f, 3.9f, 4.0f };
test_result(X1a, 6, 7.3f / 2, 6, "1a");
samples_t X2a = { 3.1f, 3.2f, 3.3f, 3.4f, 3.7f, 3.7f, 3.7f, 3.8f, 3.9f, 4.0f };
test_result(X2a, 6, 7.1f / 2, 4, "2a");
samples_t X2b = { 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.8f, 3.9f, 4.0f };
test_result(X2b, 6, 7.5f / 2, 7, "2b");
samples_t X3a = { 3.f, 3.2f, 3.3f, 3.4f, 3.7f, 3.7f, 3.7f, 3.8f, 3.9f, 4.0f };
test_result(X3a, 4, 7.1f / 2, 4, "3a");
samples_t X3b = { 3.1f, 3.2f, 3.3f, 3.4f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f };
test_result(X3b, 4, 7.1f / 2, 4, "3b");
samples_t X4a = { 3.1f, 3.2f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.9f, 4.0f };
test_result(X4a, 4, 6.9f / 2, 2, "4a");
samples_t X4b = { 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.8f, 3.9f, 4.0f };
test_result(X4b, 4, 7.5f / 2, 7, "4b");
samples_t X4c = { 3.1f, 3.2f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f };
test_result(X4c, 4, 6.9f / 2, 2, "4c");
}
TEST_F(TestFImdlp, MaxDepth)
{
// Set max_depth to 1
auto test = CPPFImdlp(3, 1, 0);
vector<cutPoints_t> expected = {
{4.3, 5.45f, 7.9},
{2, 3.35f, 4.4},
{1, 2.45f, 6.9},
{0.1, 0.8f, 2.5}
};
vector<int> depths = { 1, 1, 1, 1 };
test_dataset(test, "iris", expected, depths);
}
TEST_F(TestFImdlp, MinLength)
{
auto test = CPPFImdlp(75, 100, 0);
// Set min_length to 75
vector<cutPoints_t> expected = {
{4.3, 5.45f, 5.75f, 7.9},
{2, 2.85f, 3.35f, 4.4},
{1, 2.45f, 4.75f, 6.9},
{0.1, 0.8f, 1.75f, 2.5}
};
vector<int> depths = { 3, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
}
TEST_F(TestFImdlp, MinLengthMaxDepth)
{
// Set min_length to 75
auto test = CPPFImdlp(75, 2, 0);
vector<cutPoints_t> expected = {
{4.3, 5.45f, 5.75f, 7.9},
{2, 2.85f, 3.35f, 4.4},
{1, 2.45f, 4.75f, 6.9},
{0.1, 0.8f, 1.75f, 2.5}
};
vector<int> depths = { 2, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
}
TEST_F(TestFImdlp, MaxCutPointsInteger)
{
// Set min_length to 75
auto test = CPPFImdlp(75, 2, 1);
vector<cutPoints_t> expected = {
{4.3, 5.45f, 7.9},
{2, 2.85f, 4.4},
{1, 2.45f, 6.9},
{0.1, 0.8f, 2.5}
};
vector<int> depths = { 2, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
}
TEST_F(TestFImdlp, MaxCutPointsFloat)
{
// Set min_length to 75
auto test = CPPFImdlp(75, 2, 0.2f);
vector<cutPoints_t> expected = {
{4.3, 5.45f, 5.75f, 7.9},
{2, 2.85f, 3.35f, 4.4},
{1, 2.45f, 4.75f, 6.9},
{0.1, 0.8f, 1.75f, 2.5}
};
vector<int> depths = { 2, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
}
TEST_F(TestFImdlp, ProposedCuts)
{
vector<pair<float, size_t>> proposed_list = { {0.1f, 2},
{0.5f, 10},
{0.07f, 1},
{1.0f, 1},
{2.0f, 2} };
size_t expected;
size_t computed;
for (auto proposed_item : proposed_list) {
tie(proposed_cuts, expected) = proposed_item;
computed = compute_max_num_cut_points();
ASSERT_EQ(expected, computed);
}
}
TEST_F(TestFImdlp, TransformTest)
{
labels_t expected = {
5, 3, 4, 4, 5, 5, 5, 5, 2, 4, 5, 5, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5,
5, 4, 5, 3, 5, 5, 5, 4, 4, 5, 5, 5, 4, 4, 5, 4, 3, 5, 5, 0, 4, 5,
5, 3, 5, 4, 5, 4, 4, 4, 4, 0, 1, 1, 4, 0, 2, 0, 0, 3, 0, 2, 2, 4,
3, 0, 0, 0, 4, 1, 0, 1, 2, 3, 1, 3, 2, 0, 0, 0, 0, 0, 3, 5, 4, 0,
3, 0, 0, 3, 0, 0, 0, 3, 2, 2, 0, 1, 4, 0, 3, 2, 3, 3, 0, 2, 0, 5,
4, 0, 3, 0, 1, 4, 3, 5, 0, 0, 4, 1, 1, 0, 4, 4, 1, 3, 1, 3, 1, 5,
1, 1, 0, 3, 5, 4, 3, 4, 4, 4, 0, 4, 4, 3, 0, 3, 5, 3
};
ArffFiles file;
file.load(data_path + "iris.arff", true);
vector<samples_t>& X = file.getX();
labels_t& y = file.getY();
fit(X[1], y);
auto computed = transform(X[1]);
EXPECT_EQ(computed.size(), expected.size());
for (unsigned long i = 0; i < computed.size(); i++) {
EXPECT_EQ(computed[i], expected[i]);
}
auto computed_ft = fit_transform(X[1], y);
EXPECT_EQ(computed_ft.size(), expected.size());
for (unsigned long i = 0; i < computed_ft.size(); i++) {
EXPECT_EQ(computed_ft[i], expected[i]);
}
}
TEST_F(TestFImdlp, SafeXAccessIndexOutOfBounds)
{
// Test safe_X_access with index out of bounds for indices array
X = { 1.0f, 2.0f, 3.0f };
y = { 1, 2, 3 };
indices = { 0, 1 }; // shorter than expected
// This should trigger the first exception in safe_X_access (idx >= indices.size())
EXPECT_THROW_WITH_MESSAGE(safe_X_access(2), std::out_of_range, "Index out of bounds for indices array");
}
TEST_F(TestFImdlp, SafeXAccessXOutOfBounds)
{
// Test safe_X_access with real_idx out of bounds for X array
X = { 1.0f, 2.0f }; // shorter array
y = { 1, 2, 3 };
indices = { 0, 1, 5 }; // indices[2] = 5 is out of bounds for X
// This should trigger the second exception in safe_X_access (real_idx >= X.size())
EXPECT_THROW_WITH_MESSAGE(safe_X_access(2), std::out_of_range, "Index out of bounds for X array");
}
TEST_F(TestFImdlp, SafeYAccessIndexOutOfBounds)
{
// Test safe_y_access with index out of bounds for indices array
X = { 1.0f, 2.0f, 3.0f };
y = { 1, 2, 3 };
indices = { 0, 1 }; // shorter than expected
// This should trigger the first exception in safe_y_access (idx >= indices.size())
EXPECT_THROW_WITH_MESSAGE(safe_y_access(2), std::out_of_range, "Index out of bounds for indices array");
}
TEST_F(TestFImdlp, SafeYAccessYOutOfBounds)
{
// Test safe_y_access with real_idx out of bounds for y array
X = { 1.0f, 2.0f, 3.0f };
y = { 1, 2 }; // shorter array
indices = { 0, 1, 5 }; // indices[2] = 5 is out of bounds for y
// This should trigger the second exception in safe_y_access (real_idx >= y.size())
EXPECT_THROW_WITH_MESSAGE(safe_y_access(2), std::out_of_range, "Index out of bounds for y array");
}
TEST_F(TestFImdlp, SafeSubtractUnderflow)
{
// Test safe_subtract with underflow condition (b > a)
EXPECT_THROW_WITH_MESSAGE(safe_subtract(3, 5), std::underflow_error, "Subtraction would cause underflow");
}
}