20 Commits

Author SHA1 Message Date
Ricardo Montañana Gómez
cb9babace1 Merge c488ace719 into 7b0673fd4b 2024-07-02 11:50:55 +02:00
c488ace719 Fix FImdlp tests 2024-07-02 11:50:42 +02:00
8f6e16f04f Fix BinDisc quantile mistakes 2024-07-02 09:40:06 +02:00
7b0673fd4b Update README 2024-06-24 11:47:03 +02:00
a1346e1943 Fix Error in percentile method 2024-06-24 10:55:26 +02:00
b3fc598c29 Update build.yml 2024-06-14 22:04:29 +02:00
cc1efa0b4e Update README 2024-06-14 22:01:11 +02:00
90965877eb Add Makefile with build & test actions 2024-06-14 21:17:30 +02:00
c4e6c041fe Fix int type 2024-06-09 00:29:55 +02:00
7938df7f0f Update sonar mdlp version 2024-06-08 13:25:28 +02:00
7ee9896734 Fix mistake in github action 2024-06-08 12:36:56 +02:00
8f7f605670 Fix mistake in github action 2024-06-08 12:32:18 +02:00
2f55b27691 Fix mistake in github action 2024-06-08 12:28:23 +02:00
378fbd51ef Fix mistake in github action 2024-06-08 12:25:17 +02:00
402d0da878 Fix mistake in github action 2024-06-08 12:23:28 +02:00
f34bcc2ed7 Add libtorch to github action 2024-06-08 12:20:51 +02:00
c9ba35fb58 update test script 2024-06-08 12:02:16 +02:00
e205668906 Add torch methods to discretize
Add fit_transform methods
2024-06-07 23:54:42 +02:00
633aa52849 Refactor sample build 2024-06-06 12:04:55 +02:00
61de687476 Fix library creation problem 2024-06-06 11:13:50 +02:00
30 changed files with 1015 additions and 275 deletions

View File

@@ -22,15 +22,19 @@ jobs:
run: |
sudo apt-get -y install lcov
sudo apt-get -y install gcovr
- name: Install Libtorch
run: |
wget https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-2.3.1%2Bcpu.zip
unzip libtorch-cxx11-abi-shared-with-deps-2.3.1+cpu.zip
- name: Tests & build-wrapper
run: |
cmake -S . -B build -Wno-dev
cmake -S . -B build -Wno-dev -DCMAKE_PREFIX_PATH=$(pwd)/libtorch -DENABLE_TESTING=ON
build-wrapper-linux-x86-64 --out-dir ${{ env.BUILD_WRAPPER_OUT_DIR }} cmake --build build/ --config Release
cd build
make
ctest -C Release --output-on-failure --test-dir tests
cd ..
gcovr -f CPPFImdlp.cpp -f Metrics.cpp -f BinDisc.cpp --txt --sonarqube=coverage.xml
gcovr -f CPPFImdlp.cpp -f Metrics.cpp -f BinDisc.cpp -f Discretizer.cpp --txt --sonarqube=coverage.xml
- name: Run sonar-scanner
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

2
.gitignore vendored
View File

@@ -33,6 +33,8 @@
**/build
build_Debug
build_Release
build_debug
build_release
**/lcoverage
.idea
cmake-*

18
.vscode/settings.json vendored
View File

@@ -88,6 +88,22 @@
"*.toml": "toml",
"utility": "cpp",
"span": "cpp",
"*.tcc": "cpp"
"*.tcc": "cpp",
"bit": "cpp",
"charconv": "cpp",
"cinttypes": "cpp",
"codecvt": "cpp",
"functional": "cpp",
"iterator": "cpp",
"memory_resource": "cpp",
"random": "cpp",
"source_location": "cpp",
"format": "cpp",
"numbers": "cpp",
"semaphore": "cpp",
"stop_token": "cpp",
"text_encoding": "cpp",
"typeindex": "cpp",
"valarray": "cpp"
}
}

View File

@@ -1,5 +1,4 @@
#include <algorithm>
#include <limits>
#include <cmath>
#include "BinDisc.h"
#include <iostream>
@@ -20,7 +19,8 @@ namespace mdlp {
// y is included for compatibility with the Discretizer interface
cutPoints.clear();
if (X.empty()) {
cutPoints.push_back(std::numeric_limits<precision_t>::max());
cutPoints.push_back(0.0);
cutPoints.push_back(0.0);
return;
}
if (strategy == strategy_t::QUANTILE) {
@@ -35,13 +35,12 @@ namespace mdlp {
}
std::vector<precision_t> linspace(precision_t start, precision_t end, int num)
{
// Doesn't include end point as it is not needed
if (start == end) {
return { 0 };
return { start, end };
}
precision_t delta = (end - start) / static_cast<precision_t>(num - 1);
std::vector<precision_t> linspc;
for (size_t i = 0; i < num - 1; ++i) {
for (size_t i = 0; i < num; ++i) {
precision_t val = start + delta * static_cast<precision_t>(i);
linspc.push_back(val);
}
@@ -55,17 +54,19 @@ namespace mdlp {
{
// Implementation taken from https://dpilger26.github.io/NumCpp/doxygen/html/percentile_8hpp_source.html
std::vector<precision_t> results;
bool first = true;
results.reserve(percentiles.size());
for (auto percentile : percentiles) {
const size_t i = static_cast<size_t>(std::floor(static_cast<double>(data.size() - 1) * percentile / 100.));
const auto indexLower = clip(i, 0, data.size() - 1);
const auto indexLower = clip(i, 0, data.size() - 2);
const double percentI = static_cast<double>(indexLower) / static_cast<double>(data.size() - 1);
const double fraction =
(percentile / 100.0 - percentI) /
(static_cast<double>(indexLower + 1) / static_cast<double>(data.size() - 1) - percentI);
const auto value = data[indexLower] + (data[indexLower + 1] - data[indexLower]) * fraction;
if (value != results.back())
if (value != results.back() || first) // first needed as results.back() return is undefined for empty vectors
results.push_back(value);
first = false;
}
return results;
}
@@ -75,25 +76,16 @@ namespace mdlp {
auto data = X;
std::sort(data.begin(), data.end());
if (data.front() == data.back() || data.size() == 1) {
// if X is constant
cutPoints.push_back(std::numeric_limits<precision_t>::max());
// if X is constant, pass any two given points that shall be ignored in transform
cutPoints.push_back(data.front());
cutPoints.push_back(data.front());
return;
}
cutPoints = percentile(data, quantiles);
normalizeCutPoints();
}
void BinDisc::fit_uniform(samples_t& X)
{
auto minmax = std::minmax_element(X.begin(), X.end());
cutPoints = linspace(*minmax.first, *minmax.second, n_bins + 1);
normalizeCutPoints();
}
void BinDisc::normalizeCutPoints()
{
// Add max value to the end
cutPoints.push_back(std::numeric_limits<precision_t>::max());
// Remove first as it is not needed
cutPoints.erase(cutPoints.begin());
}
}

View File

@@ -6,7 +6,6 @@
#include <string>
namespace mdlp {
enum class strategy_t {
UNIFORM,
QUANTILE
@@ -21,7 +20,6 @@ namespace mdlp {
private:
void fit_uniform(samples_t&);
void fit_quantile(samples_t&);
void normalizeCutPoints();
int n_bins;
strategy_t strategy;
};

View File

@@ -1,13 +1,11 @@
cmake_minimum_required(VERSION 3.20)
project(mdlp)
if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW)
endif ()
set(CMAKE_CXX_STANDARD 11)
add_library(mdlp CPPFImdlp.cpp Metrics.cpp)
set(CMAKE_CXX_STANDARD 17)
find_package(Torch REQUIRED)
include_directories(${TORCH_INCLUDE_DIRS})
add_library(mdlp CPPFImdlp.cpp Metrics.cpp BinDisc.cpp Discretizer.cpp)
target_link_libraries(mdlp "${TORCH_LIBRARIES}")
add_subdirectory(sample)
add_subdirectory(tests)
if (ENABLE_TESTING)
add_subdirectory(tests)
endif(ENABLE_TESTING)

View File

@@ -25,7 +25,7 @@ namespace mdlp {
}
if (proposed_cuts < 1)
return static_cast<size_t>(round(static_cast<float>(X.size()) * proposed_cuts));
return static_cast<size_t>(proposed_cuts);
return static_cast<size_t>(proposed_cuts); // The 2 extra cutpoints should not be considered here as this parameter is considered before they are added
}
void CPPFImdlp::fit(samples_t& X_, labels_t& y_)
@@ -58,6 +58,10 @@ namespace mdlp {
resizeCutPoints();
}
}
// Insert first & last X value to the cutpoints as them shall be ignored in transform
auto minmax = std::minmax_element(X.begin(), X.end());
cutPoints.push_back(*minmax.second);
cutPoints.insert(cutPoints.begin(), *minmax.first);
}
pair<precision_t, size_t> CPPFImdlp::valueCutPoint(size_t start, size_t cut, size_t end)

51
Discretizer.cpp Normal file
View File

@@ -0,0 +1,51 @@
#include "Discretizer.h"
namespace mdlp {
labels_t& Discretizer::transform(const samples_t& data)
{
discretizedData.clear();
discretizedData.reserve(data.size());
// CutPoints always have more than two items
// Have to ignore first and last cut points provided
auto first = cutPoints.begin() + 1;
auto last = cutPoints.end() - 1;
for (const precision_t& item : data) {
auto upper = std::lower_bound(first, last, item);
int number = upper - first;
/*
OJO
*/
if (number < 0)
throw std::runtime_error("number is less than 0 in discretizer::transform");
discretizedData.push_back(number);
}
return discretizedData;
}
labels_t& Discretizer::fit_transform(samples_t& X_, labels_t& y_)
{
fit(X_, y_);
return transform(X_);
}
void Discretizer::fit_t(torch::Tensor& X_, torch::Tensor& y_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
fit(X, y);
}
torch::Tensor Discretizer::transform_t(torch::Tensor& X_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<float>(), X_.data_ptr<float>() + num_elements);
auto result = transform(X);
return torch::tensor(result, torch::kInt32);
}
torch::Tensor Discretizer::fit_transform_t(torch::Tensor& X_, torch::Tensor& y_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
auto result = fit_transform(X, y);
return torch::tensor(result, torch::kInt32);
}
}

View File

@@ -3,6 +3,7 @@
#include <string>
#include <algorithm>
#include <torch/torch.h>
#include "typesFImdlp.h"
namespace mdlp {
@@ -10,22 +11,17 @@ namespace mdlp {
public:
Discretizer() = default;
virtual ~Discretizer() = default;
virtual void fit(samples_t& X_, labels_t& y_) = 0;
inline cutPoints_t getCutPoints() const { return cutPoints; };
labels_t& transform(const samples_t& data)
{
discretizedData.clear();
discretizedData.reserve(data.size());
for (const precision_t& item : data) {
auto upper = std::upper_bound(cutPoints.begin(), cutPoints.end(), item);
discretizedData.push_back(upper - cutPoints.begin());
}
return discretizedData;
};
static inline std::string version() { return "1.2.0"; };
virtual void fit(samples_t& X_, labels_t& y_) = 0;
labels_t& transform(const samples_t& data);
labels_t& fit_transform(samples_t& X_, labels_t& y_);
void fit_t(torch::Tensor& X_, torch::Tensor& y_);
torch::Tensor transform_t(torch::Tensor& X_);
torch::Tensor fit_transform_t(torch::Tensor& X_, torch::Tensor& y_);
static inline std::string version() { return "1.2.3"; };
protected:
labels_t discretizedData = labels_t();
cutPoints_t cutPoints;
cutPoints_t cutPoints; // At least two cutpoints must be provided, the first and the last will be ignored in transform
};
}
#endif

13
Makefile Normal file
View File

@@ -0,0 +1,13 @@
SHELL := /bin/bash
.DEFAULT_GOAL := build
.PHONY: build test
build:
@if [ -d build_release ]; then rm -fr build_release; fi
@mkdir build_release
@cmake -B build_release -S . -DCMAKE_BUILD_TYPE=Release -DENABLE_TESTING=OFF
@cmake --build build_release
test:
@echo "Testing..."
@cd tests && ./test

View File

@@ -4,8 +4,8 @@
using namespace std;
namespace mdlp {
Metrics::Metrics(labels_t& y_, indices_t& indices_): y(y_), indices(indices_),
numClasses(computeNumClasses(0, indices.size()))
Metrics::Metrics(labels_t& y_, indices_t& indices_) : y(y_), indices(indices_),
numClasses(computeNumClasses(0, indices_.size()))
{
}

View File

@@ -14,21 +14,27 @@ The implementation tries to mitigate the problem of different label values with
Other features:
- Intervals with the same value of the variable are not taken into account for cutpoints.
- Intervals have to have more than two examples to be evaluated.
- Intervals have to have more than two examples to be evaluated (mdlp).
The algorithm returns the cut points for the variable.
- The algorithm returns the cut points for the variable.
- The transform method uses the cut points returning its index in the following way:
cut[i - 1] <= x < cut[i]
using the [std::upper_bound](https://en.cppreference.com/w/cpp/algorithm/upper_bound) method
- K-Bins discretization is also implemented, and "quantile" and "uniform" strategies are available.
## Sample
To run the sample, just execute the following commands:
```bash
cd sample
cmake -B build
cd build
make
./sample -f iris -m 2
./sample -h
cmake -B build -S .
cmake --build build
build/sample/sample -f iris -m 2
build/sample/sample -h
```
## Test
@@ -36,6 +42,5 @@ make
To run the tests and see coverage (llvm & gcovr have to be installed), execute the following commands:
```bash
cd tests
./test
make test
```

View File

@@ -1,21 +0,0 @@
{
"version": "0.2.0",
"configurations": [
{
"name": "lldb puro",
"type": "cppdbg",
// "targetArchitecture": "arm64",
"request": "launch",
"program": "${workspaceRoot}/build/sample",
"args": [
"-f",
"iris"
],
"stopAtEntry": false,
"cwd": "${workspaceRoot}/build/",
"environment": [],
"externalConsole": false,
"MIMode": "lldb"
},
]
}

View File

@@ -1,5 +1,6 @@
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_BUILD_TYPE Debug)
add_executable(sample sample.cpp ../tests/ArffFiles.cpp ../Metrics.cpp ../CPPFImdlp.cpp)
add_executable(sample sample.cpp ../tests/ArffFiles.cpp)
target_link_libraries(sample mdlp "${TORCH_LIBRARIES}")

View File

@@ -5,13 +5,13 @@
#include <algorithm>
#include <cstring>
#include <getopt.h>
#include <torch/torch.h>
#include "../Discretizer.h"
#include "../CPPFImdlp.h"
#include "../BinDisc.h"
#include "../tests/ArffFiles.h"
using namespace std;
using namespace mdlp;
const string PATH = "../../tests/datasets/";
const string PATH = "tests/datasets/";
/* print a description of all supported options */
void usage(const char* path)
@@ -20,17 +20,17 @@ void usage(const char* path)
const char* basename = strrchr(path, '/');
basename = basename ? basename + 1 : path;
cout << "usage: " << basename << "[OPTION]" << endl;
cout << " -h, --help\t\t Print this help and exit." << endl;
cout
std::cout << "usage: " << basename << "[OPTION]" << std::endl;
std::cout << " -h, --help\t\t Print this help and exit." << std::endl;
std::cout
<< " -f, --file[=FILENAME]\t {all, diabetes, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors, test}."
<< endl;
cout << " -p, --path[=FILENAME]\t folder where the arff dataset is located, default " << PATH << endl;
cout << " -m, --max_depth=INT\t max_depth pased to discretizer. Default = MAX_INT" << endl;
cout
<< std::endl;
std::cout << " -p, --path[=FILENAME]\t folder where the arff dataset is located, default " << PATH << std::endl;
std::cout << " -m, --max_depth=INT\t max_depth pased to discretizer. Default = MAX_INT" << std::endl;
std::cout
<< " -c, --max_cutpoints=FLOAT\t percentage of lines expressed in decimal or integer number or cut points. Default = 0 -> any"
<< endl;
cout << " -n, --min_length=INT\t interval min_length pased to discretizer. Default = 3" << endl;
<< std::endl;
std::cout << " -n, --min_length=INT\t interval min_length pased to discretizer. Default = 3" << std::endl;
}
tuple<string, string, int, int, float> parse_arguments(int argc, char** argv)
@@ -96,56 +96,79 @@ void process_file(const string& path, const string& file_name, bool class_last,
file.load(path + file_name + ".arff", class_last);
const auto attributes = file.getAttributes();
const auto items = file.getSize();
cout << "Number of lines: " << items << endl;
cout << "Attributes: " << endl;
std::cout << "Number of lines: " << items << std::endl;
std::cout << "Attributes: " << std::endl;
for (auto attribute : attributes) {
cout << "Name: " << get<0>(attribute) << " Type: " << get<1>(attribute) << endl;
std::cout << "Name: " << get<0>(attribute) << " Type: " << get<1>(attribute) << std::endl;
}
cout << "Class name: " << file.getClassName() << endl;
cout << "Class type: " << file.getClassType() << endl;
cout << "Data: " << endl;
vector<samples_t>& X = file.getX();
labels_t& y = file.getY();
std::cout << "Class name: " << file.getClassName() << std::endl;
std::cout << "Class type: " << file.getClassType() << std::endl;
std::cout << "Data: " << std::endl;
std::vector<mdlp::samples_t>& X = file.getX();
mdlp::labels_t& y = file.getY();
for (int i = 0; i < 5; i++) {
for (auto feature : X) {
cout << fixed << setprecision(1) << feature[i] << " ";
std::cout << fixed << setprecision(1) << feature[i] << " ";
}
cout << y[i] << endl;
std::cout << y[i] << std::endl;
}
auto test = mdlp::CPPFImdlp(min_length, max_depth, max_cutpoints);
size_t total = 0;
for (auto i = 0; i < attributes.size(); i++) {
auto min_max = minmax_element(X[i].begin(), X[i].end());
cout << "Cut points for feature " << get<0>(attributes[i]) << ": [" << setprecision(3);
std::cout << "Cut points for feature " << get<0>(attributes[i]) << ": [" << setprecision(3);
test.fit(X[i], y);
auto cut_points = test.getCutPoints();
for (auto item : cut_points) {
cout << item;
std::cout << item;
if (item != cut_points.back())
cout << ", ";
std::cout << ", ";
}
total += test.getCutPoints().size();
cout << "]" << endl;
cout << "Min: " << *min_max.first << " Max: " << *min_max.second << endl;
cout << "--------------------------" << endl;
std::cout << "]" << std::endl;
std::cout << "Min: " << *min_max.first << " Max: " << *min_max.second << std::endl;
std::cout << "--------------------------" << std::endl;
}
std::cout << "Total cut points ...: " << total << std::endl;
std::cout << "Total feature states: " << total + attributes.size() << std::endl;
std::cout << "Version ............: " << test.version() << std::endl;
std::cout << "Transformed data (vector)..: " << std::endl;
test.fit(X[0], y);
auto data = test.transform(X[0]);
for (int i = 130; i < 135; i++) {
std::cout << std::fixed << std::setprecision(1) << X[0][i] << " " << data[i] << std::endl;
}
auto Xt = torch::tensor(X[0], torch::kFloat32);
auto yt = torch::tensor(y, torch::kInt32);
//test.fit_t(Xt, yt);
auto result = test.fit_transform_t(Xt, yt);
std::cout << "Transformed data (torch)...: " << std::endl;
for (int i = 130; i < 135; i++) {
std::cout << std::fixed << std::setprecision(1) << Xt[i].item<float>() << " " << result[i].item<int>() << std::endl;
}
auto disc = mdlp::BinDisc(3);
auto res_v = disc.fit_transform(X[0], y);
disc.fit_t(Xt, yt);
auto res_t = disc.transform_t(Xt);
std::cout << "Transformed data (BinDisc)...: " << std::endl;
for (int i = 130; i < 135; i++) {
std::cout << std::fixed << std::setprecision(1) << Xt[i].item<float>() << " " << res_v[i] << " " << res_t[i].item<int>() << std::endl;
}
cout << "Total cut points ...: " << total << endl;
cout << "Total feature states: " << total + attributes.size() << endl;
}
void process_all_files(const map<string, bool>& datasets, const string& path, int max_depth, int min_length,
float max_cutpoints)
{
cout << "Results: " << "Max_depth: " << max_depth << " Min_length: " << min_length << " Max_cutpoints: "
<< max_cutpoints << endl << endl;
std::cout << "Results: " << "Max_depth: " << max_depth << " Min_length: " << min_length << " Max_cutpoints: "
<< max_cutpoints << std::endl << std::endl;
printf("%-20s %4s %4s\n", "Dataset", "Feat", "Cuts Time(ms)");
printf("==================== ==== ==== ========\n");
for (const auto& dataset : datasets) {
ArffFiles file;
file.load(path + dataset.first + ".arff", dataset.second);
auto attributes = file.getAttributes();
vector<samples_t>& X = file.getX();
labels_t& y = file.getY();
std::vector<mdlp::samples_t>& X = file.getX();
mdlp::labels_t& y = file.getY();
size_t timing = 0;
size_t cut_points = 0;
for (auto i = 0; i < attributes.size(); i++) {
@@ -163,7 +186,7 @@ void process_all_files(const map<string, bool>& datasets, const string& path, in
int main(int argc, char** argv)
{
map<string, bool> datasets = {
std::map<std::string, bool> datasets = {
{"diabetes", true},
{"glass", true},
{"iris", true},
@@ -173,14 +196,14 @@ int main(int argc, char** argv)
{"mfeat-factors", true},
{"test", true}
};
string file_name;
string path;
std::string file_name;
std::string path;
int max_depth;
int min_length;
float max_cutpoints;
tie(file_name, path, max_depth, min_length, max_cutpoints) = parse_arguments(argc, argv);
if (datasets.find(file_name) == datasets.end() && file_name != "all") {
cout << "Invalid file name: " << file_name << endl;
std::cout << "Invalid file name: " << file_name << std::endl;
usage(argv[0]);
exit(1);
}
@@ -188,10 +211,10 @@ int main(int argc, char** argv)
process_all_files(datasets, path, max_depth, min_length, max_cutpoints);
else {
process_file(path, file_name, datasets[file_name], max_depth, min_length, max_cutpoints);
cout << "File name ....: " << file_name << endl;
cout << "Max depth ....: " << max_depth << endl;
cout << "Min length ...: " << min_length << endl;
cout << "Max cutpoints : " << max_cutpoints << endl;
std::cout << "File name ....: " << file_name << std::endl;
std::cout << "Max depth ....: " << max_depth << std::endl;
std::cout << "Min length ...: " << min_length << std::endl;
std::cout << "Max cutpoints : " << max_cutpoints << std::endl;
}
return 0;
}

View File

@@ -3,7 +3,7 @@ sonar.organization=rmontanana
# This is the name and version displayed in the SonarCloud UI.
sonar.projectName=mdlp
sonar.projectVersion=1.1.3
sonar.projectVersion=1.2.1
# sonar.test.exclusions=tests/**
# sonar.tests=tests/
# sonar.coverage.exclusions=tests/**,sample/**
@@ -11,4 +11,4 @@ sonar.projectVersion=1.1.3
#sonar.sources=.
# Encoding of the source code. Default is default system encoding
sonar.sourceEncoding=UTF-8
sonar.sourceEncoding=UTF-8

View File

@@ -4,6 +4,7 @@
#include "gtest/gtest.h"
#include "ArffFiles.h"
#include "../BinDisc.h"
#include "Experiments.hpp"
namespace mdlp {
const float margin = 1e-4;
@@ -40,10 +41,11 @@ namespace mdlp {
auto y = labels_t();
fit(X, y);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_NEAR(3.66667, cuts.at(0), margin);
EXPECT_NEAR(6.33333, cuts.at(1), margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts.at(2));
ASSERT_EQ(4, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(3.66667, cuts.at(1), margin);
EXPECT_NEAR(6.33333, cuts.at(2), margin);
EXPECT_NEAR(9.0, cuts.at(3), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2 };
EXPECT_EQ(expected, labels);
@@ -53,10 +55,11 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_NEAR(3.666667, cuts[0], margin);
EXPECT_NEAR(6.333333, cuts[1], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
ASSERT_EQ(4, cuts.size());
EXPECT_NEAR(1, cuts[0], margin);
EXPECT_NEAR(3.666667, cuts[1], margin);
EXPECT_NEAR(6.333333, cuts[2], margin);
EXPECT_NEAR(9, cuts[3], margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2 };
EXPECT_EQ(expected, labels);
@@ -66,12 +69,13 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 };
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_EQ(4.0, cuts[0]);
EXPECT_EQ(7.0, cuts[1]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
ASSERT_EQ(4, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(4.0, cuts.at(1), margin);
EXPECT_NEAR(7.0, cuts.at(2), margin);
EXPECT_NEAR(10.0, cuts.at(3), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc3Q, X10BinsQuantile)
@@ -79,12 +83,13 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 };
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_EQ(4, cuts[0]);
EXPECT_EQ(7, cuts[1]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
ASSERT_EQ(4, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(4.0, cuts.at(1), margin);
EXPECT_NEAR(7.0, cuts.at(2), margin);
EXPECT_NEAR(10.0, cuts.at(3), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc3U, X11BinsUniform)
@@ -92,10 +97,11 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_NEAR(4.33333, cuts[0], margin);
EXPECT_NEAR(7.66667, cuts[1], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
ASSERT_EQ(4, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(4.33333, cuts.at(1), margin);
EXPECT_NEAR(7.66667, cuts.at(2), margin);
EXPECT_NEAR(11.0, cuts.at(3), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
EXPECT_EQ(expected, labels);
@@ -105,10 +111,11 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_NEAR(4.33333, cuts[0], margin);
EXPECT_NEAR(7.66667, cuts[1], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
ASSERT_EQ(4, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(4.33333, cuts.at(1), margin);
EXPECT_NEAR(7.66667, cuts.at(2), margin);
EXPECT_NEAR(11.0, cuts.at(3), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
EXPECT_EQ(expected, labels);
@@ -118,8 +125,9 @@ namespace mdlp {
samples_t X = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(1, cuts.size());
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
ASSERT_EQ(2, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(1, cuts.at(1), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 0, 0 };
EXPECT_EQ(expected, labels);
@@ -129,8 +137,9 @@ namespace mdlp {
samples_t X = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(1, cuts.size());
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
ASSERT_EQ(2, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(1, cuts.at(1), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 0, 0 };
EXPECT_EQ(expected, labels);
@@ -140,16 +149,18 @@ namespace mdlp {
samples_t X = {};
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(1, cuts.size());
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
ASSERT_EQ(2, cuts.size());
EXPECT_NEAR(0, cuts.at(0), margin);
EXPECT_NEAR(0, cuts.at(1), margin);
}
TEST_F(TestBinDisc3Q, EmptyQuantile)
{
samples_t X = {};
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(1, cuts.size());
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
ASSERT_EQ(2, cuts.size());
EXPECT_NEAR(0, cuts.at(0), margin);
EXPECT_NEAR(0, cuts.at(1), margin);
}
TEST(TestBinDisc3, ExceptionNumberBins)
{
@@ -160,10 +171,11 @@ namespace mdlp {
samples_t X = { 3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0 };
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_NEAR(1.66667, cuts[0], margin);
EXPECT_NEAR(2.33333, cuts[1], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
ASSERT_EQ(4, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(1.66667, cuts.at(1), margin);
EXPECT_NEAR(2.33333, cuts.at(2), margin);
EXPECT_NEAR(3.0, cuts.at(3), margin);
auto labels = transform(X);
labels_t expected = { 2, 0, 0, 2, 0, 0, 2, 0, 0 };
EXPECT_EQ(expected, labels);
@@ -174,9 +186,10 @@ namespace mdlp {
samples_t X = { 3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(2, cuts.size());
EXPECT_NEAR(1.66667, cuts[0], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[1]);
ASSERT_EQ(3, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(1.66667, cuts.at(1), margin);
EXPECT_NEAR(3.0, cuts.at(2), margin);
auto labels = transform(X);
labels_t expected = { 1, 0, 0, 1, 0, 0, 1, 0, 0 };
EXPECT_EQ(expected, labels);
@@ -187,11 +200,12 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
ASSERT_EQ(3.75, cuts[0]);
EXPECT_EQ(6.5, cuts[1]);
EXPECT_EQ(9.25, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(3.75, cuts.at(1), margin);
EXPECT_NEAR(6.5, cuts.at(2), margin);
EXPECT_NEAR(9.25, cuts.at(3), margin);
EXPECT_NEAR(12.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3 };
EXPECT_EQ(expected, labels);
@@ -201,11 +215,12 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
ASSERT_EQ(3.75, cuts[0]);
EXPECT_EQ(6.5, cuts[1]);
EXPECT_EQ(9.25, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(3.75, cuts.at(1), margin);
EXPECT_NEAR(6.5, cuts.at(2), margin);
EXPECT_NEAR(9.25, cuts.at(3), margin);
EXPECT_NEAR(12.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3 };
EXPECT_EQ(expected, labels);
@@ -215,13 +230,14 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
EXPECT_EQ(4.0, cuts[0]);
EXPECT_EQ(7.0, cuts[1]);
EXPECT_EQ(10.0, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(4.0, cuts.at(1), margin);
EXPECT_NEAR(7.0, cuts.at(2), margin);
EXPECT_NEAR(10.0, cuts.at(3), margin);
EXPECT_NEAR(13.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4Q, X13BinsQuantile)
@@ -229,13 +245,14 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
EXPECT_EQ(4.0, cuts[0]);
EXPECT_EQ(7.0, cuts[1]);
EXPECT_EQ(10.0, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(4.0, cuts.at(1), margin);
EXPECT_NEAR(7.0, cuts.at(2), margin);
EXPECT_NEAR(10.0, cuts.at(3), margin);
EXPECT_NEAR(13.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4U, X14BinsUniform)
@@ -243,11 +260,12 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
EXPECT_EQ(4.25, cuts[0]);
EXPECT_EQ(7.5, cuts[1]);
EXPECT_EQ(10.75, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(4.25, cuts.at(1), margin);
EXPECT_NEAR(7.5, cuts.at(2), margin);
EXPECT_NEAR(10.75, cuts.at(3), margin);
EXPECT_NEAR(14.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
EXPECT_EQ(expected, labels);
@@ -257,11 +275,12 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
EXPECT_EQ(4.25, cuts[0]);
EXPECT_EQ(7.5, cuts[1]);
EXPECT_EQ(10.75, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(4.25, cuts.at(1), margin);
EXPECT_NEAR(7.5, cuts.at(2), margin);
EXPECT_NEAR(10.75, cuts.at(3), margin);
EXPECT_NEAR(14.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
EXPECT_EQ(expected, labels);
@@ -271,13 +290,14 @@ namespace mdlp {
samples_t X = { 15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
EXPECT_EQ(4.5, cuts[0]);
EXPECT_EQ(8, cuts[1]);
EXPECT_EQ(11.5, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(4.5, cuts.at(1), margin);
EXPECT_NEAR(8, cuts.at(2), margin);
EXPECT_NEAR(11.5, cuts.at(3), margin);
EXPECT_NEAR(15.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 3, 2, 3, 3, 1, 0, 3, 2, 2, 2, 1, 0, 0, 1, 0 };
labels_t expected = { 3, 1, 3, 3, 1, 0, 3, 2, 2, 2, 1, 0, 0, 1, 0 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4Q, X15BinsQuantile)
@@ -285,13 +305,14 @@ namespace mdlp {
samples_t X = { 15.0, 13.0, 12.0, 14.0, 6.0, 1.0, 8.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
EXPECT_EQ(4.5, cuts[0]);
EXPECT_EQ(8, cuts[1]);
EXPECT_EQ(11.5, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(4.5, cuts.at(1), margin);
EXPECT_NEAR(8, cuts.at(2), margin);
EXPECT_NEAR(11.5, cuts.at(3), margin);
EXPECT_NEAR(15.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 3, 3, 3, 3, 1, 0, 2, 2, 2, 2, 1, 0, 0, 1, 0 };
labels_t expected = { 3, 3, 3, 3, 1, 0, 1, 2, 2, 2, 1, 0, 0, 1, 0 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4U, RepeatedValuesUniform)
@@ -300,13 +321,14 @@ namespace mdlp {
// 0 1 2 3 4 5 6 7 8 9
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
EXPECT_EQ(1.0, cuts[0]);
EXPECT_EQ(2.0, cuts[1]);
ASSERT_EQ(3.0, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(0.0, cuts.at(0), margin);
EXPECT_NEAR(1.0, cuts.at(1), margin);
EXPECT_NEAR(2.0, cuts.at(2), margin);
EXPECT_NEAR(3.0, cuts.at(3), margin);
EXPECT_NEAR(4.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 1, 1, 1, 2, 2, 3, 3, 3, 3 };
labels_t expected = { 0, 0, 0, 0, 1, 1, 2, 2, 2, 3 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4Q, RepeatedValuesQuantile)
@@ -315,12 +337,14 @@ namespace mdlp {
// 0 1 2 3 4 5 6 7 8 9
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_EQ(2.0, cuts[0]);
ASSERT_EQ(3.0, cuts[1]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(0.0, cuts.at(0), margin);
EXPECT_NEAR(1.0, cuts.at(1), margin);
EXPECT_NEAR(2.0, cuts.at(2), margin);
EXPECT_NEAR(3.0, cuts.at(3), margin);
EXPECT_NEAR(4.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 2, 2, 2, 2 };
labels_t expected = { 0, 0, 0, 0, 1, 1, 2, 2, 2, 3 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4U, irisUniform)
@@ -332,6 +356,13 @@ namespace mdlp {
auto Xt = transform(X[0]);
labels_t expected = { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 2, 1, 2, 1, 2, 0, 2, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 2, 1, 3, 2, 2, 3, 0, 3, 2, 3, 2, 2, 2, 1, 1, 2, 2, 3, 3, 1, 2, 1, 3, 2, 2, 3, 2, 1, 2, 3, 3, 3, 2, 2, 1, 3, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };
EXPECT_EQ(expected, Xt);
auto Xtt = fit_transform(X[0], file.getY());
EXPECT_EQ(expected, Xtt);
auto Xt_t = torch::tensor(X[0], torch::kFloat32);
auto y_t = torch::tensor(file.getY(), torch::kInt32);
auto Xtt_t = fit_transform_t(Xt_t, y_t);
for (int i = 0; i < expected.size(); i++)
EXPECT_EQ(expected[i], Xtt_t[i].item<int>());
}
TEST_F(TestBinDisc4Q, irisQuantile)
{
@@ -342,5 +373,44 @@ namespace mdlp {
auto Xt = transform(X[0]);
labels_t expected = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 3, 1, 3, 1, 2, 0, 3, 1, 0, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2 };
EXPECT_EQ(expected, Xt);
auto Xtt = fit_transform(X[0], file.getY());
EXPECT_EQ(expected, Xtt);
auto Xt_t = torch::tensor(X[0], torch::kFloat32);
auto y_t = torch::tensor(file.getY(), torch::kInt32);
auto Xtt_t = fit_transform_t(Xt_t, y_t);
for (int i = 0; i < expected.size(); i++)
EXPECT_EQ(expected[i], Xtt_t[i].item<int>());
fit_t(Xt_t, y_t);
auto Xt_t2 = transform_t(Xt_t);
for (int i = 0; i < expected.size(); i++)
EXPECT_EQ(expected[i], Xt_t2[i].item<int>());
}
TEST(TestBinDiscGeneric, Fileset)
{
Experiments exps(data_path + "tests.txt");
int num = 0;
while (exps.is_next()) {
Experiment exp = exps.next();
std::cout << "Exp #: " << ++num << " From: " << exp.from_ << " To: " << exp.to_ << " Step: " << exp.step_ << " Bins: " << exp.n_bins_ << " Strategy: " << exp.strategy_ << std::endl;
BinDisc disc(exp.n_bins_, exp.strategy_ == "Q" ? strategy_t::QUANTILE : strategy_t::UNIFORM);
std::vector<float> test;
for (float i = exp.from_; i < exp.to_; i += exp.step_) {
test.push_back(i);
}
// show_vector(test, "Test");
auto empty = std::vector<int>();
auto Xt = disc.fit_transform(test, empty);
auto cuts = disc.getCutPoints();
EXPECT_EQ(exp.discretized_data_.size(), Xt.size());
for (int i = 0; i < exp.discretized_data_.size(); ++i) {
if (exp.discretized_data_.at(i) != Xt.at(i)) {
std::cout << "Error at " << i << " Expected: " << exp.discretized_data_.at(i) << " Got: " << Xt.at(i) << std::endl;
}
}
EXPECT_EQ(exp.cutpoints_.size(), cuts.size());
for (int i = 0; i < exp.cutpoints_.size(); ++i) {
EXPECT_NEAR(exp.cutpoints_.at(i), cuts.at(i), margin);
}
}
}
}

View File

@@ -1,10 +1,8 @@
cmake_minimum_required(VERSION 3.20)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)
cmake_policy(SET CMP0135 NEW)
include(FetchContent)
include_directories(${GTEST_INCLUDE_DIRS})
FetchContent_Declare(
googletest
URL https://github.com/google/googletest/archive/03597a01ee50ed33e9dfd640b249b4be3799d395.zip
@@ -13,25 +11,29 @@ FetchContent_Declare(
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
FetchContent_MakeAvailable(googletest)
find_package(Torch REQUIRED)
enable_testing()
include_directories(${TORCH_INCLUDE_DIRS})
add_executable(Metrics_unittest ../Metrics.cpp Metrics_unittest.cpp)
target_link_libraries(Metrics_unittest GTest::gtest_main)
target_compile_options(Metrics_unittest PRIVATE --coverage)
target_link_options(Metrics_unittest PRIVATE --coverage)
add_executable(FImdlp_unittest ../CPPFImdlp.cpp ArffFiles.cpp ../Metrics.cpp FImdlp_unittest.cpp)
target_link_libraries(FImdlp_unittest GTest::gtest_main)
add_executable(FImdlp_unittest ../CPPFImdlp.cpp ArffFiles.cpp ../Metrics.cpp FImdlp_unittest.cpp ../Discretizer.cpp)
target_link_libraries(FImdlp_unittest GTest::gtest_main "${TORCH_LIBRARIES}")
target_compile_options(FImdlp_unittest PRIVATE --coverage)
target_link_options(FImdlp_unittest PRIVATE --coverage)
add_executable(BinDisc_unittest ../BinDisc.cpp ArffFiles.cpp BinDisc_unittest.cpp)
target_link_libraries(BinDisc_unittest GTest::gtest_main)
add_executable(BinDisc_unittest ../BinDisc.cpp ArffFiles.cpp BinDisc_unittest.cpp ../Discretizer.cpp)
target_link_libraries(BinDisc_unittest GTest::gtest_main "${TORCH_LIBRARIES}")
target_compile_options(BinDisc_unittest PRIVATE --coverage)
target_link_options(BinDisc_unittest PRIVATE --coverage)
add_executable(Discretizer_unittest ../BinDisc.cpp ../CPPFImdlp.cpp ArffFiles.cpp ../Metrics.cpp Discretizer_unittest.cpp)
target_link_libraries(Discretizer_unittest GTest::gtest_main)
add_executable(Discretizer_unittest ../BinDisc.cpp ../CPPFImdlp.cpp ArffFiles.cpp ../Metrics.cpp ../Discretizer.cpp Discretizer_unittest.cpp)
target_link_libraries(Discretizer_unittest GTest::gtest_main "${TORCH_LIBRARIES}")
target_compile_options(Discretizer_unittest PRIVATE --coverage)
target_link_options(Discretizer_unittest PRIVATE --coverage)

View File

@@ -21,6 +21,15 @@ namespace mdlp {
}
const std::string data_path = set_data_path();
TEST(Discretizer, Version)
{
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
auto version = disc->version();
delete disc;
std::cout << "Version computed: " << version;
EXPECT_EQ("1.2.3", version);
}
TEST(Discretizer, BinIrisUniform)
{
ArffFiles file;

108
tests/Experiments.hpp Normal file
View File

@@ -0,0 +1,108 @@
#ifndef EXPERIMENTS_HPP
#define EXPERIMENTS_HPP
#include<sstream>
#include<iostream>
#include<string>
#include<fstream>
#include<vector>
#include<tuple>
#include "../typesFImdlp.h"
class Experiment {
public:
Experiment(float from_, float to_, float step_, int n_bins, std::string strategy, std::vector<int> data_discretized, std::vector<float> cutpoints) :
from_{ from_ }, to_{ to_ }, step_{ step_ }, n_bins_{ n_bins }, strategy_{ strategy }, discretized_data_{ data_discretized }, cutpoints_{ cutpoints }
{
if (strategy != "Q" && strategy != "U") {
throw std::invalid_argument("Invalid strategy " + strategy);
}
}
float from_;
float to_;
float step_;
int n_bins_;
std::string strategy_;
std::vector<int> discretized_data_;
std::vector<float> cutpoints_;
};
class Experiments {
public:
Experiments(const std::string filename) : filename{ filename }
{
test_file.open(filename);
if (!test_file.is_open()) {
throw std::runtime_error("File " + filename + " not found");
}
exp_end = false;
}
~Experiments()
{
test_file.close();
}
bool end() const
{
return exp_end;
}
bool is_next()
{
while (std::getline(test_file, line) && line[0] == '#');
if (test_file.eof()) {
exp_end = true;
return false;
}
return true;
}
Experiment next()
{
return parse_experiment(line);
}
private:
std::tuple<float, float, float, int, std::string> parse_header(const std::string& line)
{
std::istringstream iss(line);
std::string from_, to_, step_, n_bins, strategy;
iss >> from_ >> to_ >> step_ >> n_bins >> strategy;
return { std::stof(from_), std::stof(to_), std::stof(step_), std::stoi(n_bins), strategy };
}
template <typename T>
std::vector<T> parse_vector(const std::string& line)
{
std::istringstream iss(line);
std::vector<T> data;
std::string d;
while (iss >> d) {
data.push_back(std::is_same<T, float>::value ? std::stof(d) : std::stoi(d));
}
return data;
}
Experiment parse_experiment(std::string& line)
{
if (line == "RANGE") {
std::getline(test_file, line);
auto [from_, to_, step_, n_bins, strategy] = parse_header(line);
} else {
std::getline(test_file, line);
}
std::getline(test_file, line);
auto data_discretized = parse_vector<int>(line);
std::getline(test_file, line);
auto cutpoints = parse_vector<float>(line);
return Experiment{ from_, to_, step_, n_bins, strategy, data_discretized, cutpoints };
}
std::ifstream test_file;
std::string filename;
std::string line;
bool exp_end;
};
template <typename T>
void show_vector(const std::vector<T>& data, std::string title)
{
std::cout << title << ": ";
std::string sep = "";
for (const auto& d : data) {
std::cout << sep << d;
sep = ", ";
}
std::cout << std::endl;
}
#endif

View File

@@ -124,7 +124,7 @@ namespace mdlp {
{
samples_t X_ = { 1, 2, 2, 3, 4, 2, 3 };
labels_t y_ = { 0, 0, 1, 2, 3, 4, 5 };
cutPoints_t expected = { 1.5f, 2.5f };
cutPoints_t expected = { 1.0, 1.5f, 2.5f, 4.0 };
fit(X_, y_);
auto computed = getCutPoints();
EXPECT_EQ(computed.size(), expected.size());
@@ -167,29 +167,31 @@ namespace mdlp {
y = { 1 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 0);
EXPECT_EQ(computed.size(), 2);
X = { 1, 3 };
y = { 1, 2 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 0);
EXPECT_EQ(computed.size(), 2);
X = { 2, 4 };
y = { 1, 2 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 0);
EXPECT_EQ(computed.size(), 2);
X = { 1, 2, 3 };
y = { 1, 2, 2 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 1);
EXPECT_NEAR(computed[0], 1.5, precision);
EXPECT_EQ(computed.size(), 3);
EXPECT_NEAR(computed[0], 1, precision);
EXPECT_NEAR(computed[1], 1.5, precision);
EXPECT_NEAR(computed[2], 3, precision);
}
TEST_F(TestFImdlp, TestArtificialDataset)
{
fit(X, y);
cutPoints_t expected = { 5.05f };
cutPoints_t expected = { 4.7, 5.05, 6.0 };
vector<precision_t> computed = getCutPoints();
EXPECT_EQ(computed.size(), expected.size());
for (unsigned long i = 0; i < computed.size(); i++) {
@@ -200,10 +202,10 @@ namespace mdlp {
TEST_F(TestFImdlp, TestIris)
{
vector<cutPoints_t> expected = {
{5.45f, 5.75f},
{2.75f, 2.85f, 2.95f, 3.05f, 3.35f},
{2.45f, 4.75f, 5.05f},
{0.8f, 1.75f}
{4.3, 5.45f, 5.75f, 7.9},
{2, 2.75f, 2.85f, 2.95f, 3.05f, 3.35f, 4.4},
{1, 2.45f, 4.75f, 5.05f, 6.9},
{0.1, 0.8f, 1.75f, 2.5}
};
vector<int> depths = { 3, 5, 4, 3 };
auto test = CPPFImdlp();
@@ -213,7 +215,7 @@ namespace mdlp {
TEST_F(TestFImdlp, ComputeCutPointsGCase)
{
cutPoints_t expected;
expected = { 1.5 };
expected = { 0, 1.5, 2 };
samples_t X_ = { 0, 1, 2, 2, 2 };
labels_t y_ = { 1, 1, 1, 2, 2 };
fit(X_, y_);
@@ -247,10 +249,10 @@ namespace mdlp {
// Set max_depth to 1
auto test = CPPFImdlp(3, 1, 0);
vector<cutPoints_t> expected = {
{5.45f},
{3.35f},
{2.45f},
{0.8f}
{4.3, 5.45f, 7.9},
{2, 3.35f, 4.4},
{1, 2.45f, 6.9},
{0.1, 0.8f, 2.5}
};
vector<int> depths = { 1, 1, 1, 1 };
test_dataset(test, "iris", expected, depths);
@@ -261,10 +263,10 @@ namespace mdlp {
auto test = CPPFImdlp(75, 100, 0);
// Set min_length to 75
vector<cutPoints_t> expected = {
{5.45f, 5.75f},
{2.85f, 3.35f},
{2.45f, 4.75f},
{0.8f, 1.75f}
{4.3, 5.45f, 5.75f, 7.9},
{2, 2.85f, 3.35f, 4.4},
{1, 2.45f, 4.75f, 6.9},
{0.1, 0.8f, 1.75f, 2.5}
};
vector<int> depths = { 3, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
@@ -275,10 +277,10 @@ namespace mdlp {
// Set min_length to 75
auto test = CPPFImdlp(75, 2, 0);
vector<cutPoints_t> expected = {
{5.45f, 5.75f},
{2.85f, 3.35f},
{2.45f, 4.75f},
{0.8f, 1.75f}
{4.3, 5.45f, 5.75f, 7.9},
{2, 2.85f, 3.35f, 4.4},
{1, 2.45f, 4.75f, 6.9},
{0.1, 0.8f, 1.75f, 2.5}
};
vector<int> depths = { 2, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
@@ -289,10 +291,10 @@ namespace mdlp {
// Set min_length to 75
auto test = CPPFImdlp(75, 2, 1);
vector<cutPoints_t> expected = {
{5.45f},
{2.85f},
{2.45f},
{0.8f}
{4.3, 5.45f, 7.9},
{2, 2.85f, 4.4},
{1, 2.45f, 6.9},
{0.1, 0.8f, 2.5}
};
vector<int> depths = { 2, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
@@ -304,10 +306,10 @@ namespace mdlp {
// Set min_length to 75
auto test = CPPFImdlp(75, 2, 0.2f);
vector<cutPoints_t> expected = {
{5.45f, 5.75f},
{2.85f, 3.35f},
{2.45f, 4.75f},
{0.8f, 1.75f}
{4.3, 5.45f, 5.75f, 7.9},
{2, 2.85f, 3.35f, 4.4},
{1, 2.45f, 4.75f, 6.9},
{0.1, 0.8f, 1.75f, 2.5}
};
vector<int> depths = { 2, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
@@ -327,7 +329,6 @@ namespace mdlp {
computed = compute_max_num_cut_points();
ASSERT_EQ(expected, computed);
}
}
TEST_F(TestFImdlp, TransformTest)
{
@@ -350,5 +351,10 @@ namespace mdlp {
for (unsigned long i = 0; i < computed.size(); i++) {
EXPECT_EQ(computed[i], expected[i]);
}
auto computed_ft = fit_transform(X[1], y);
EXPECT_EQ(computed_ft.size(), expected.size());
for (unsigned long i = 0; i < computed_ft.size(); i++) {
EXPECT_EQ(computed_ft[i], expected[i]);
}
}
}

View File

@@ -2,13 +2,13 @@
#include "../Metrics.h"
namespace mdlp {
class TestMetrics: public Metrics, public testing::Test {
class TestMetrics : public Metrics, public testing::Test {
public:
labels_t y_ = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
indices_t indices_ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
precision_t precision = 0.000001f;
precision_t precision = 1e-6;
TestMetrics(): Metrics(y_, indices_) {};
TestMetrics() : Metrics(y_, indices_) {};
void SetUp() override
{

149
tests/datasets/tests.txt Normal file
View File

@@ -0,0 +1,149 @@
#
# from, to, step, #bins, Q/U
# discretized data
# cut points
#
RANGE
0, 100, 1, 4, Q
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
0.0, 24.75, 49.5, 74.25, 99.0
RANGE
0, 50, 1, 4, Q
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
0.0, 12.25, 24.5, 36.75, 49.0
RANGE
0, 100, 1, 3, Q
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
0.0, 33.0, 66.0, 99.0
RANGE
0, 50, 1, 3, Q
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
0.0, 16.33333, 32.66667, 49.0
RANGE
0, 10, 1, 3, Q
0, 0, 0, 0, 1, 1, 1, 2, 2, 2
0.0, 3.0, 6.0, 9.0
RANGE
0, 100, 1, 4, U
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
0.0, 24.75, 49.5, 74.25, 99.0
RANGE
0, 50, 1, 4, U
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
0.0, 12.25, 24.5, 36.75, 49.0
RANGE
0, 100, 1, 3, U
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
0.0, 33.0, 66.0, 99.0
RANGE
0, 50, 1, 3, U
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
0.0, 16.33333, 32.66667, 49.0
RANGE
0, 10, 1, 3, U
0, 0, 0, 1, 1, 1, 2, 2, 2, 2
0.0, 3.0, 6.0, 9.0
RANGE
1, 10, 1, 3, Q
0, 0, 0, 1, 1, 1, 2, 2, 2
1.0, 3.66667, 6.33333, 9.0
RANGE
1, 10, 1, 3, U
0, 0, 0, 1, 1, 1, 2, 2, 2
1.0, 3.66667, 6.33333, 9.0
RANGE
1, 11, 1, 3, Q
0, 0, 0, 1, 1, 1, 1, 2, 2, 2
1.0, 4.0, 7.0, 10.0
RANGE
1, 11, 1, 3, U
0, 0, 0, 1, 1, 1, 2, 2, 2, 2
1.0, 4.0, 7.0, 10.0
RANGE
1, 12, 1, 3, Q
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2
1.0, 4.33333, 7.66667, 11.0
RANGE
1, 12, 1, 3, U
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2
1.0, 4.33333, 7.66667, 11.0
RANGE
1, 13, 1, 3, Q
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
1.0, 4.66667, 8.33333, 12.0
RANGE
1, 13, 1, 3, U
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
1.0, 4.66667, 8.33333, 12.0
RANGE
1, 14, 1, 3, Q
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.0, 9.0, 13.0
RANGE
1, 14, 1, 3, U
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.0, 9.0, 13.0
RANGE
1, 15, 1, 3, Q
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.33333, 9.66667, 14.0
RANGE
1, 15, 1, 3, U
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.33333, 9.66667, 14.0
VECTOR
Q3[3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0]
1, 0, 0, 1, 0, 0, 1, 0, 0
1.0, 1.66667, 3.0
VECTOR
U3[3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0]
2, 0, 0, 2, 0, 0, 2, 0, 0
1.0, 1.66667, 2.33333, 3.0
VECTOR
Q3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
1.0, 4.66667, 8.33333, 12.0
VECTOR
U3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
1.0, 4.66667, 8.33333, 12.0
VECTOR
Q3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0]
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.0, 9.0, 13.0
VECTOR
U3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0]
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.0, 9.0, 13.0
VECTOR
Q3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.33333, 9.66667, 14.0
VECTOR
U3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.33333, 9.66667, 14.0
VECTOR
Q3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.66667, 10.33333, 15.0
VECTOR
U3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.66667, 10.33333, 15.0
VECTOR
Q3[15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]
2, 1, 2, 2, 1, 0, 2, 2, 1, 1, 1, 0, 0, 0, 0
1.0, 5.66667, 10.33333, 15.0
VECTOR
U3[15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]
2, 1, 2, 2, 1, 0, 2, 2, 1, 1, 1, 0, 0, 0, 0
1.0, 5.66667, 10.33333, 15.0
VECTOR
Q3[0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0]
0, 0, 0, 0, 1, 1, 2, 2, 2, 2
0.0, 1.0, 3.0, 4.0
VECTOR
U3[0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0]
0, 0, 0, 0, 1, 1, 2, 2, 2, 2
0.0, 1.33333, 2.66667, 4.0

BIN
tests/k Executable file

Binary file not shown.

32
tests/k.cpp Normal file
View File

@@ -0,0 +1,32 @@
#include <iostream>
#include <vector>
#include <algorithm> // For std::lower_bound
std::vector<int> searchsorted(const std::vector<float>& cuts, const std::vector<float>& data) {
std::vector<int> indices;
indices.reserve(data.size());
for (const float& value : data) {
// Find the first position in 'a' where 'value' could be inserted to maintain order
auto it = std::lower_bound(cuts.begin(), cuts.end(), value);
// Calculate the index
int index = it - cuts.begin();
indices.push_back(index);
}
return indices;
}
int main() {
std::vector<float> cuts = { 10.0 };
std::vector<float> data = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
std::vector<int> result = searchsorted(cuts, data);
for (int idx : result) {
std::cout << idx << " ";
}
return 0;
}

BIN
tests/t Executable file

Binary file not shown.

102
tests/t.cpp Normal file
View File

@@ -0,0 +1,102 @@
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
typedef float precision_t;
std::vector<int> transform(const std::vector<float> cutPoints, const std::vector<float>& data)
{
std::vector<int> discretizedData;
discretizedData.reserve(data.size());
for (const float& item : data) {
auto upper = std::lower_bound(cutPoints.begin(), cutPoints.end(), item);
discretizedData.push_back(upper - cutPoints.begin());
}
return discretizedData;
}
template <typename T>
void show_vector(const std::vector<T>& data, std::string title)
{
std::cout << title << ": ";
std::string sep = "";
for (const auto& d : data) {
std::cout << sep << d;
sep = ", ";
}
std::cout << std::endl;
}
std::vector<precision_t> linspace(precision_t start, precision_t end, int num)
{
if (start == end) {
return { start, end };
}
precision_t delta = (end - start) / static_cast<precision_t>(num - 1);
std::vector<precision_t> linspc;
for (size_t i = 0; i < num - 1; ++i) {
precision_t val = start + delta * static_cast<precision_t>(i);
linspc.push_back(val);
}
return linspc;
}
size_t clip(const size_t n, size_t lower, size_t upper)
{
return std::max(lower, std::min(n, upper));
}
std::vector<precision_t> percentile(std::vector<precision_t>& data, std::vector<precision_t>& percentiles)
{
// Implementation taken from https://dpilger26.github.io/NumCpp/doxygen/html/percentile_8hpp_source.html
std::vector<precision_t> results;
results.reserve(percentiles.size());
for (auto percentile : percentiles) {
const size_t i = static_cast<size_t>(std::floor(static_cast<double>(data.size() - 1) * percentile / 100.));
const auto indexLower = clip(i, 0, data.size() - 2);
const double percentI = static_cast<double>(indexLower) / static_cast<double>(data.size() - 1);
const double fraction =
(percentile / 100.0 - percentI) /
(static_cast<double>(indexLower + 1) / static_cast<double>(data.size() - 1) - percentI);
const auto value = data[indexLower] + (data[indexLower + 1] - data[indexLower]) * fraction;
if (value != results.back())
results.push_back(value);
}
return results;
}
int main()
{
// std::vector<float> test;
// std::vector<float> cuts = { 0, 24.75, 49.5, 74.25, 10000 };
// for (int i = 0; i < 100; ++i) {
// test.push_back(i);
// }
// auto Xt = transform(cuts, test);
// show_vector(Xt, "Discretized data:");
// std::vector<float> test2 = { 0,1,2,3,4,5,6,7,8,9,10,11 };
// std::vector<float> cuts2 = { 0,1,2,3,4,5,6,7,8,9 };
// auto Xt2 = transform(cuts2, test2);
// show_vector(Xt2, "discretized data2: ");
auto quantiles = linspace(0.0, 100.0, 3 + 1);
std::vector<float> data = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
std::vector<float> cutPoints;
std::sort(data.begin(), data.end());
cutPoints = percentile(data, quantiles);
cutPoints.push_back(std::numeric_limits<precision_t>::max());
data.push_back(15);
data.push_back(0);
cutPoints.pop_back();
cutPoints.erase(cutPoints.begin());
cutPoints.clear();
cutPoints.push_back(9.0);
auto Xt = transform(cutPoints, data);
show_vector(data, "Original data");
show_vector(Xt, "Discretized data");
show_vector(cutPoints, "Cutpoints");
return 0;
}
/*
n_bins = 3
data = [1,2,3,4,5,6,7,8,9,10]
quantiles = np.linspace(0, 100, n_bins + 1)
bin_edges = np.percentile(data, quantiles)
*/

View File

@@ -1,5 +1,5 @@
#!/bin/bash
if [ -d build ] ; then
if [ -d build ] && [ "$1" != "run" ]; then
rm -fr build
fi
if [ -d gcovr-report ] ; then
@@ -11,8 +11,5 @@ cd build
ctest --output-on-failure
cd ..
mkdir gcovr-report
#lcov --capture --directory ./ --output-file lcoverage/main_coverage.info
#lcov --remove lcoverage/main_coverage.info 'v1/*' '/Applications/*' '*/tests/*' --output-file lcoverage/main_coverage.info -q
#lcov --list lcoverage/main_coverage.info
cd ..
gcovr --gcov-filter "CPPFImdlp.cpp" --gcov-filter "Metrics.cpp" --gcov-filter "BinDisc.cpp" --gcov-filter "Discretizer.h" --txt --sonarqube=tests/gcovr-report/coverage.xml --exclude-noncode-lines
gcovr --gcov-filter "CPPFImdlp.cpp" --gcov-filter "Metrics.cpp" --gcov-filter "BinDisc.cpp" --gcov-filter "Discretizer.cpp" --txt --sonarqube=tests/gcovr-report/coverage.xml --exclude-noncode-lines

50
tests/tests_do.py Normal file
View File

@@ -0,0 +1,50 @@
import json
from sklearn.preprocessing import KBinsDiscretizer
with open("datasets/tests.txt") as f:
data = f.readlines()
data = [x.strip() for x in data if x[0] != "#"]
for i in range(0, len(data), 4):
experiment_type = data[i]
print("Experiment:", data[i + 1])
if experiment_type == "RANGE":
range_data = data[i + 1]
from_, to_, step_, n_bins_, strategy_ = range_data.split(",")
X = [[float(x)] for x in range(int(from_), int(to_), int(step_))]
else:
strategy_ = data[i + 1][0]
n_bins_ = data[i + 1][1]
vector = data[i + 1][2:]
X = [[float(x)] for x in json.loads(vector)]
strategy = "quantile" if strategy_.strip() == "Q" else "uniform"
disc = KBinsDiscretizer(
n_bins=int(n_bins_),
encode="ordinal",
strategy=strategy,
)
expected_data = data[i + 2]
cuts_data = data[i + 3]
disc.fit(X)
result = disc.transform(X)
result = [int(x) for x in result.flatten()]
expected = [int(x) for x in expected_data.split(",")]
assert len(result) == len(expected)
for j in range(len(result)):
if result[j] != expected[j]:
print("Error at", j, "Expected=", expected[j], "Result=", result[j])
expected_cuts = disc.bin_edges_[0]
computed_cuts = [float(x) for x in cuts_data.split(",")]
assert len(expected_cuts) == len(computed_cuts)
for j in range(len(expected_cuts)):
if round(expected_cuts[j], 5) != computed_cuts[j]:
print(
"Error at",
j,
"Expected=",
expected_cuts[j],
"Result=",
computed_cuts[j],
)

133
tests/tests_generate.ipynb Normal file
View File

@@ -0,0 +1,133 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.preprocessing import KBinsDiscretizer"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"experiments_range = [\n",
" [0, 100, 1, 4, \"Q\"],\n",
" [0, 50, 1, 4, \"Q\"],\n",
" [0, 100, 1, 3, \"Q\"],\n",
" [0, 50, 1, 3, \"Q\"],\n",
" [0, 10, 1, 3, \"Q\"],\n",
" [0, 100, 1, 4, \"U\"],\n",
" [0, 50, 1, 4, \"U\"],\n",
" [0, 100, 1, 3, \"U\"],\n",
" [0, 50, 1, 3, \"U\"],\n",
"# \n",
" [0, 10, 1, 3, \"U\"],\n",
" [1, 10, 1, 3, \"Q\"],\n",
" [1, 10, 1, 3, \"U\"],\n",
" [1, 11, 1, 3, \"Q\"],\n",
" [1, 11, 1, 3, \"U\"],\n",
" [1, 12, 1, 3, \"Q\"],\n",
" [1, 12, 1, 3, \"U\"],\n",
" [1, 13, 1, 3, \"Q\"],\n",
" [1, 13, 1, 3, \"U\"],\n",
" [1, 14, 1, 3, \"Q\"],\n",
" [1, 14, 1, 3, \"U\"],\n",
" [1, 15, 1, 3, \"Q\"],\n",
" [1, 15, 1, 3, \"U\"]\n",
"]\n",
"experiments_vectors = [\n",
" (3, [3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0]),\n",
" (3, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]),\n",
" (3, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0]),\n",
" (3, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]),\n",
" (3, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]),\n",
" (3, [15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]),\n",
" (3, [0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0])\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/rmontanana/miniconda3/lib/python3.11/site-packages/sklearn/preprocessing/_discretization.py:307: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 0 are removed. Consider decreasing the number of bins.\n",
" warnings.warn(\n"
]
}
],
"source": [
"def write_lists(file, data, cuts):\n",
" sep = \"\"\n",
" for res in data:\n",
" file.write(f\"{sep}{int(res):d}\")\n",
" sep= \", \"\n",
" file.write(\"\\n\")\n",
" sep = \"\"\n",
" for res in cuts:\n",
" file.write(sep + str(round(res,5)))\n",
" sep = \", \"\n",
" file.write(\"\\n\")\n",
"\n",
"with open(\"datasets/tests.txt\", \"w\") as file:\n",
" file.write(\"#\\n\")\n",
" file.write(\"# from, to, step, #bins, Q/U\\n\")\n",
" file.write(\"# discretized data\\n\")\n",
" file.write(\"# cut points\\n\")\n",
" file.write(\"#\\n\")\n",
" for experiment in experiments_range:\n",
" file.write(\"RANGE\\n\")\n",
" (from_, to_, step_, bins_, strategy) = experiment\n",
" disc = KBinsDiscretizer(n_bins=bins_, encode='ordinal', strategy='quantile' if strategy.strip() == \"Q\" else 'uniform')\n",
" data = [[x] for x in range(from_, to_, step_)]\n",
" disc.fit(data)\n",
" result = disc.transform(data)\n",
" file.write(f\"{from_}, {to_}, {step_}, {bins_}, {strategy}\\n\")\n",
" write_lists(file, result, disc.bin_edges_[0])\n",
" for n_bins, experiment in experiments_vectors:\n",
" for strategy in [\"Q\", \"U\"]:\n",
" file.write(\"VECTOR\\n\")\n",
" file.write(f\"{strategy}{n_bins}{experiment}\\n\")\n",
" disc = KBinsDiscretizer(\n",
" n_bins=n_bins,\n",
" encode=\"ordinal\",\n",
" \n",
" strategy=\"quantile\" if strategy.strip() == \"Q\" else \"uniform\",\n",
" )\n",
" data = [[x] for x in experiment]\n",
" result = disc.fit_transform(data)\n",
" write_lists(file, result, disc.bin_edges_[0])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}