mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-16 07:55:58 +00:00
Claude enhancement proposal
This commit is contained in:
182
CHANGELOG.md
Normal file
182
CHANGELOG.md
Normal file
@@ -0,0 +1,182 @@
|
|||||||
|
# Changelog
|
||||||
|
|
||||||
|
All notable changes to this project will be documented in this file.
|
||||||
|
|
||||||
|
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
|
||||||
|
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||||
|
|
||||||
|
## [Unreleased]
|
||||||
|
|
||||||
|
### Added
|
||||||
|
- Conan dependency manager support
|
||||||
|
- Technical analysis report
|
||||||
|
|
||||||
|
### Changed
|
||||||
|
- Updated README.md
|
||||||
|
- Refactored library version and installation system
|
||||||
|
- Updated config variable names
|
||||||
|
|
||||||
|
### Fixed
|
||||||
|
- Removed unneeded semicolon
|
||||||
|
|
||||||
|
## [2.0.1] - 2024-07-22
|
||||||
|
|
||||||
|
### Added
|
||||||
|
- CMake install target and make install command
|
||||||
|
- Flag to control sample building in Makefile
|
||||||
|
|
||||||
|
### Changed
|
||||||
|
- Library name changed to `fimdlp`
|
||||||
|
- Updated version numbers across test files
|
||||||
|
|
||||||
|
### Fixed
|
||||||
|
- Version number consistency in tests
|
||||||
|
|
||||||
|
## [2.0.0] - 2024-07-04
|
||||||
|
|
||||||
|
### Added
|
||||||
|
- Makefile with build & test actions for easier development
|
||||||
|
- PyTorch (libtorch) integration for tensor operations
|
||||||
|
|
||||||
|
### Changed
|
||||||
|
- Major refactoring of build system
|
||||||
|
- Updated build workflows and CI configuration
|
||||||
|
|
||||||
|
### Fixed
|
||||||
|
- BinDisc quantile calculation errors (#9)
|
||||||
|
- Error in percentile method calculation
|
||||||
|
- Integer type issues in calculations
|
||||||
|
- Multiple GitHub Actions configuration fixes
|
||||||
|
|
||||||
|
## [1.2.1] - 2024-06-08
|
||||||
|
|
||||||
|
### Added
|
||||||
|
- PyTorch tensor methods for discretization
|
||||||
|
- Improved library build system
|
||||||
|
|
||||||
|
### Changed
|
||||||
|
- Refactored sample build process
|
||||||
|
|
||||||
|
### Fixed
|
||||||
|
- Library creation and linking issues
|
||||||
|
- Multiple GitHub Actions workflow fixes
|
||||||
|
|
||||||
|
## [1.2.0] - 2024-06-05
|
||||||
|
|
||||||
|
### Added
|
||||||
|
- **Discretizer** - Abstract base class for all discretization algorithms (#8)
|
||||||
|
- **BinDisc** - K-bins discretization with quantile and uniform strategies (#7)
|
||||||
|
- Transform method to discretize values using existing cut points
|
||||||
|
- Support for multiple datasets in sample program
|
||||||
|
- Docker development container configuration
|
||||||
|
|
||||||
|
### Changed
|
||||||
|
- Refactored system types throughout the library
|
||||||
|
- Improved sample program with better dataset handling
|
||||||
|
- Enhanced build system with debug options
|
||||||
|
|
||||||
|
### Fixed
|
||||||
|
- Transform method initialization issues
|
||||||
|
- ARFF file attribute name extraction
|
||||||
|
- Sample program library binary separation
|
||||||
|
|
||||||
|
## [1.1.3] - 2024-06-05
|
||||||
|
|
||||||
|
### Added
|
||||||
|
- `max_cutpoints` hyperparameter for controlling algorithm complexity
|
||||||
|
- `max_depth` and `min_length` as configurable hyperparameters
|
||||||
|
- Enhanced sample program with hyperparameter support
|
||||||
|
- Additional datasets for testing
|
||||||
|
|
||||||
|
### Changed
|
||||||
|
- Improved constructor design and parameter handling
|
||||||
|
- Enhanced test coverage and reporting
|
||||||
|
- Refactored build system configuration
|
||||||
|
|
||||||
|
### Fixed
|
||||||
|
- Depth initialization in fit method
|
||||||
|
- Code quality improvements and smell fixes
|
||||||
|
- Exception handling in value cut point calculations
|
||||||
|
|
||||||
|
## [1.1.2] - 2023-04-01
|
||||||
|
|
||||||
|
### Added
|
||||||
|
- Comprehensive test suite with GitHub Actions CI
|
||||||
|
- SonarCloud integration for code quality analysis
|
||||||
|
- Enhanced build system with automated testing
|
||||||
|
|
||||||
|
### Changed
|
||||||
|
- Improved GitHub Actions workflow configuration
|
||||||
|
- Updated project structure for better maintainability
|
||||||
|
|
||||||
|
### Fixed
|
||||||
|
- Build system configuration issues
|
||||||
|
- Test execution and coverage reporting
|
||||||
|
|
||||||
|
## [1.1.1] - 2023-02-22
|
||||||
|
|
||||||
|
### Added
|
||||||
|
- Limits header for proper compilation
|
||||||
|
- Enhanced build system support
|
||||||
|
|
||||||
|
### Changed
|
||||||
|
- Updated version numbering system
|
||||||
|
- Improved SonarCloud configuration
|
||||||
|
|
||||||
|
### Fixed
|
||||||
|
- ValueCutPoint exception handling (removed unnecessary exception)
|
||||||
|
- Build system compatibility issues
|
||||||
|
- GitHub Actions token configuration
|
||||||
|
|
||||||
|
## [1.1.0] - 2023-02-21
|
||||||
|
|
||||||
|
### Added
|
||||||
|
- Classic algorithm implementation for performance comparison
|
||||||
|
- Enhanced ValueCutPoint logic with same_values detection
|
||||||
|
- Glass dataset support in sample program
|
||||||
|
- Debug configuration for development
|
||||||
|
|
||||||
|
### Changed
|
||||||
|
- Refactored ValueCutPoint algorithm for better accuracy
|
||||||
|
- Improved candidate selection logic
|
||||||
|
- Enhanced sample program with multiple datasets
|
||||||
|
|
||||||
|
### Fixed
|
||||||
|
- Sign error in valueCutPoint calculation
|
||||||
|
- Final cut value computation
|
||||||
|
- Duplicate dataset handling in sample
|
||||||
|
|
||||||
|
## [1.0.0.0] - 2022-12-21
|
||||||
|
|
||||||
|
### Added
|
||||||
|
- Initial release of MDLP (Minimum Description Length Principle) discretization library
|
||||||
|
- Core CPPFImdlp algorithm implementation based on Fayyad & Irani's paper
|
||||||
|
- Entropy and information gain calculation methods
|
||||||
|
- Sample program demonstrating library usage
|
||||||
|
- CMake build system
|
||||||
|
- Basic test suite
|
||||||
|
- ARFF file format support for datasets
|
||||||
|
|
||||||
|
### Features
|
||||||
|
- Recursive discretization using entropy-based criteria
|
||||||
|
- Stable sorting with tie-breaking for identical values
|
||||||
|
- Configurable algorithm parameters
|
||||||
|
- Cross-platform C++ implementation
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Release Notes
|
||||||
|
|
||||||
|
### Version 2.x
|
||||||
|
- **Breaking Changes**: Library renamed to `fimdlp`
|
||||||
|
- **Major Enhancement**: PyTorch integration for improved performance
|
||||||
|
- **New Features**: Comprehensive discretization framework with multiple algorithms
|
||||||
|
|
||||||
|
### Version 1.x
|
||||||
|
- **Core Algorithm**: MDLP discretization implementation
|
||||||
|
- **Extensibility**: Hyperparameter support and algorithm variants
|
||||||
|
- **Quality**: Comprehensive testing and CI/CD pipeline
|
||||||
|
|
||||||
|
### Version 1.0.x
|
||||||
|
- **Foundation**: Initial stable implementation
|
||||||
|
- **Algorithm**: Core MDLP discretization functionality
|
@@ -4,7 +4,7 @@ project(fimdlp
|
|||||||
LANGUAGES CXX
|
LANGUAGES CXX
|
||||||
DESCRIPTION "Discretization algorithm based on the paper by Fayyad & Irani Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning."
|
DESCRIPTION "Discretization algorithm based on the paper by Fayyad & Irani Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning."
|
||||||
HOMEPAGE_URL "https://github.com/rmontanana/mdlp"
|
HOMEPAGE_URL "https://github.com/rmontanana/mdlp"
|
||||||
VERSION 2.0.1
|
VERSION 2.1.0
|
||||||
)
|
)
|
||||||
set(CMAKE_CXX_STANDARD 17)
|
set(CMAKE_CXX_STANDARD 17)
|
||||||
cmake_policy(SET CMP0135 NEW)
|
cmake_policy(SET CMP0135 NEW)
|
||||||
|
@@ -22,13 +22,15 @@ namespace mdlp {
|
|||||||
BinDisc::~BinDisc() = default;
|
BinDisc::~BinDisc() = default;
|
||||||
void BinDisc::fit(samples_t& X)
|
void BinDisc::fit(samples_t& X)
|
||||||
{
|
{
|
||||||
// y is included for compatibility with the Discretizer interface
|
// Input validation
|
||||||
cutPoints.clear();
|
|
||||||
if (X.empty()) {
|
if (X.empty()) {
|
||||||
cutPoints.push_back(0.0);
|
throw std::invalid_argument("Input data X cannot be empty");
|
||||||
cutPoints.push_back(0.0);
|
|
||||||
return;
|
|
||||||
}
|
}
|
||||||
|
if (X.size() < static_cast<size_t>(n_bins)) {
|
||||||
|
throw std::invalid_argument("Input data size must be at least equal to n_bins");
|
||||||
|
}
|
||||||
|
|
||||||
|
cutPoints.clear();
|
||||||
if (strategy == strategy_t::QUANTILE) {
|
if (strategy == strategy_t::QUANTILE) {
|
||||||
direction = bound_dir_t::RIGHT;
|
direction = bound_dir_t::RIGHT;
|
||||||
fit_quantile(X);
|
fit_quantile(X);
|
||||||
@@ -39,10 +41,31 @@ namespace mdlp {
|
|||||||
}
|
}
|
||||||
void BinDisc::fit(samples_t& X, labels_t& y)
|
void BinDisc::fit(samples_t& X, labels_t& y)
|
||||||
{
|
{
|
||||||
|
// Input validation for supervised interface
|
||||||
|
if (X.size() != y.size()) {
|
||||||
|
throw std::invalid_argument("X and y must have the same size");
|
||||||
|
}
|
||||||
|
if (X.empty() || y.empty()) {
|
||||||
|
throw std::invalid_argument("X and y cannot be empty");
|
||||||
|
}
|
||||||
|
|
||||||
|
// BinDisc is inherently unsupervised, but we validate inputs for consistency
|
||||||
|
// Note: y parameter is validated but not used in binning strategy
|
||||||
fit(X);
|
fit(X);
|
||||||
}
|
}
|
||||||
std::vector<precision_t> linspace(precision_t start, precision_t end, int num)
|
std::vector<precision_t> linspace(precision_t start, precision_t end, int num)
|
||||||
{
|
{
|
||||||
|
// Input validation
|
||||||
|
if (num < 2) {
|
||||||
|
throw std::invalid_argument("Number of points must be at least 2 for linspace");
|
||||||
|
}
|
||||||
|
if (std::isnan(start) || std::isnan(end)) {
|
||||||
|
throw std::invalid_argument("Start and end values cannot be NaN");
|
||||||
|
}
|
||||||
|
if (std::isinf(start) || std::isinf(end)) {
|
||||||
|
throw std::invalid_argument("Start and end values cannot be infinite");
|
||||||
|
}
|
||||||
|
|
||||||
if (start == end) {
|
if (start == end) {
|
||||||
return { start, end };
|
return { start, end };
|
||||||
}
|
}
|
||||||
@@ -60,6 +83,14 @@ namespace mdlp {
|
|||||||
}
|
}
|
||||||
std::vector<precision_t> percentile(samples_t& data, const std::vector<precision_t>& percentiles)
|
std::vector<precision_t> percentile(samples_t& data, const std::vector<precision_t>& percentiles)
|
||||||
{
|
{
|
||||||
|
// Input validation
|
||||||
|
if (data.empty()) {
|
||||||
|
throw std::invalid_argument("Data cannot be empty for percentile calculation");
|
||||||
|
}
|
||||||
|
if (percentiles.empty()) {
|
||||||
|
throw std::invalid_argument("Percentiles cannot be empty");
|
||||||
|
}
|
||||||
|
|
||||||
// Implementation taken from https://dpilger26.github.io/NumCpp/doxygen/html/percentile_8hpp_source.html
|
// Implementation taken from https://dpilger26.github.io/NumCpp/doxygen/html/percentile_8hpp_source.html
|
||||||
std::vector<precision_t> results;
|
std::vector<precision_t> results;
|
||||||
bool first = true;
|
bool first = true;
|
||||||
|
@@ -8,6 +8,7 @@
|
|||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <set>
|
#include <set>
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
|
#include <stdexcept>
|
||||||
#include "CPPFImdlp.h"
|
#include "CPPFImdlp.h"
|
||||||
|
|
||||||
namespace mdlp {
|
namespace mdlp {
|
||||||
@@ -18,6 +19,17 @@ namespace mdlp {
|
|||||||
max_depth(max_depth_),
|
max_depth(max_depth_),
|
||||||
proposed_cuts(proposed)
|
proposed_cuts(proposed)
|
||||||
{
|
{
|
||||||
|
// Input validation for constructor parameters
|
||||||
|
if (min_length_ < 3) {
|
||||||
|
throw std::invalid_argument("min_length must be greater than 2");
|
||||||
|
}
|
||||||
|
if (max_depth_ < 1) {
|
||||||
|
throw std::invalid_argument("max_depth must be greater than 0");
|
||||||
|
}
|
||||||
|
if (proposed < 0.0f) {
|
||||||
|
throw std::invalid_argument("proposed_cuts must be non-negative");
|
||||||
|
}
|
||||||
|
|
||||||
direction = bound_dir_t::RIGHT;
|
direction = bound_dir_t::RIGHT;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -49,12 +61,6 @@ namespace mdlp {
|
|||||||
if (X.empty() || y.empty()) {
|
if (X.empty() || y.empty()) {
|
||||||
throw invalid_argument("X and y must have at least one element");
|
throw invalid_argument("X and y must have at least one element");
|
||||||
}
|
}
|
||||||
if (min_length < 3) {
|
|
||||||
throw invalid_argument("min_length must be greater than 2");
|
|
||||||
}
|
|
||||||
if (max_depth < 1) {
|
|
||||||
throw invalid_argument("max_depth must be greater than 0");
|
|
||||||
}
|
|
||||||
indices = sortIndices(X_, y_);
|
indices = sortIndices(X_, y_);
|
||||||
metrics.setData(y, indices);
|
metrics.setData(y, indices);
|
||||||
computeCutPoints(0, X.size(), 1);
|
computeCutPoints(0, X.size(), 1);
|
||||||
@@ -81,26 +87,32 @@ namespace mdlp {
|
|||||||
precision_t previous;
|
precision_t previous;
|
||||||
precision_t actual;
|
precision_t actual;
|
||||||
precision_t next;
|
precision_t next;
|
||||||
previous = X[indices[idxPrev]];
|
previous = safe_X_access(idxPrev);
|
||||||
actual = X[indices[cut]];
|
actual = safe_X_access(cut);
|
||||||
next = X[indices[idxNext]];
|
next = safe_X_access(idxNext);
|
||||||
// definition 2 of the paper => X[t-1] < X[t]
|
// definition 2 of the paper => X[t-1] < X[t]
|
||||||
// get the first equal value of X in the interval
|
// get the first equal value of X in the interval
|
||||||
while (idxPrev > start && actual == previous) {
|
while (idxPrev > start && actual == previous) {
|
||||||
previous = X[indices[--idxPrev]];
|
--idxPrev;
|
||||||
|
previous = safe_X_access(idxPrev);
|
||||||
}
|
}
|
||||||
backWall = idxPrev == start && actual == previous;
|
backWall = idxPrev == start && actual == previous;
|
||||||
// get the last equal value of X in the interval
|
// get the last equal value of X in the interval
|
||||||
while (idxNext < end - 1 && actual == next) {
|
while (idxNext < end - 1 && actual == next) {
|
||||||
next = X[indices[++idxNext]];
|
++idxNext;
|
||||||
|
next = safe_X_access(idxNext);
|
||||||
}
|
}
|
||||||
// # of duplicates before cutpoint
|
// # of duplicates before cutpoint
|
||||||
n = cut - 1 - idxPrev;
|
n = safe_subtract(safe_subtract(cut, 1), idxPrev);
|
||||||
// # of duplicates after cutpoint
|
// # of duplicates after cutpoint
|
||||||
m = idxNext - cut - 1;
|
m = safe_subtract(safe_subtract(idxNext, cut), 1);
|
||||||
// Decide which values to use
|
// Decide which values to use
|
||||||
cut = cut + (backWall ? m + 1 : -n);
|
if (backWall) {
|
||||||
actual = X[indices[cut]];
|
cut = cut + m + 1;
|
||||||
|
} else {
|
||||||
|
cut = safe_subtract(cut, n);
|
||||||
|
}
|
||||||
|
actual = safe_X_access(cut);
|
||||||
return { (actual + previous) / 2, cut };
|
return { (actual + previous) / 2, cut };
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -109,7 +121,7 @@ namespace mdlp {
|
|||||||
size_t cut;
|
size_t cut;
|
||||||
pair<precision_t, size_t> result;
|
pair<precision_t, size_t> result;
|
||||||
// Check if the interval length and the depth are Ok
|
// Check if the interval length and the depth are Ok
|
||||||
if (end - start < min_length || depth_ > max_depth)
|
if (end < start || safe_subtract(end, start) < min_length || depth_ > max_depth)
|
||||||
return;
|
return;
|
||||||
depth = depth_ > depth ? depth_ : depth;
|
depth = depth_ > depth ? depth_ : depth;
|
||||||
cut = getCandidate(start, end);
|
cut = getCandidate(start, end);
|
||||||
@@ -129,14 +141,14 @@ namespace mdlp {
|
|||||||
/* Definition 1: A binary discretization for A is determined by selecting the cut point TA for which
|
/* Definition 1: A binary discretization for A is determined by selecting the cut point TA for which
|
||||||
E(A, TA; S) is minimal amongst all the candidate cut points. */
|
E(A, TA; S) is minimal amongst all the candidate cut points. */
|
||||||
size_t candidate = numeric_limits<size_t>::max();
|
size_t candidate = numeric_limits<size_t>::max();
|
||||||
size_t elements = end - start;
|
size_t elements = safe_subtract(end, start);
|
||||||
bool sameValues = true;
|
bool sameValues = true;
|
||||||
precision_t entropy_left;
|
precision_t entropy_left;
|
||||||
precision_t entropy_right;
|
precision_t entropy_right;
|
||||||
precision_t minEntropy;
|
precision_t minEntropy;
|
||||||
// Check if all the values of the variable in the interval are the same
|
// Check if all the values of the variable in the interval are the same
|
||||||
for (size_t idx = start + 1; idx < end; idx++) {
|
for (size_t idx = start + 1; idx < end; idx++) {
|
||||||
if (X[indices[idx]] != X[indices[start]]) {
|
if (safe_X_access(idx) != safe_X_access(start)) {
|
||||||
sameValues = false;
|
sameValues = false;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
@@ -146,7 +158,7 @@ namespace mdlp {
|
|||||||
minEntropy = metrics.entropy(start, end);
|
minEntropy = metrics.entropy(start, end);
|
||||||
for (size_t idx = start + 1; idx < end; idx++) {
|
for (size_t idx = start + 1; idx < end; idx++) {
|
||||||
// Cutpoints are always on boundaries (definition 2)
|
// Cutpoints are always on boundaries (definition 2)
|
||||||
if (y[indices[idx]] == y[indices[idx - 1]])
|
if (safe_y_access(idx) == safe_y_access(idx - 1))
|
||||||
continue;
|
continue;
|
||||||
entropy_left = precision_t(idx - start) / static_cast<precision_t>(elements) * metrics.entropy(start, idx);
|
entropy_left = precision_t(idx - start) / static_cast<precision_t>(elements) * metrics.entropy(start, idx);
|
||||||
entropy_right = precision_t(end - idx) / static_cast<precision_t>(elements) * metrics.entropy(idx, end);
|
entropy_right = precision_t(end - idx) / static_cast<precision_t>(elements) * metrics.entropy(idx, end);
|
||||||
@@ -168,7 +180,7 @@ namespace mdlp {
|
|||||||
precision_t ent;
|
precision_t ent;
|
||||||
precision_t ent1;
|
precision_t ent1;
|
||||||
precision_t ent2;
|
precision_t ent2;
|
||||||
auto N = precision_t(end - start);
|
auto N = precision_t(safe_subtract(end, start));
|
||||||
k = metrics.computeNumClasses(start, end);
|
k = metrics.computeNumClasses(start, end);
|
||||||
k1 = metrics.computeNumClasses(start, cut);
|
k1 = metrics.computeNumClasses(start, cut);
|
||||||
k2 = metrics.computeNumClasses(cut, end);
|
k2 = metrics.computeNumClasses(cut, end);
|
||||||
@@ -188,6 +200,9 @@ namespace mdlp {
|
|||||||
indices_t idx(X_.size());
|
indices_t idx(X_.size());
|
||||||
std::iota(idx.begin(), idx.end(), 0);
|
std::iota(idx.begin(), idx.end(), 0);
|
||||||
stable_sort(idx.begin(), idx.end(), [&X_, &y_](size_t i1, size_t i2) {
|
stable_sort(idx.begin(), idx.end(), [&X_, &y_](size_t i1, size_t i2) {
|
||||||
|
if (i1 >= X_.size() || i2 >= X_.size() || i1 >= y_.size() || i2 >= y_.size()) {
|
||||||
|
throw std::out_of_range("Index out of bounds in sort comparison");
|
||||||
|
}
|
||||||
if (X_[i1] == X_[i2])
|
if (X_[i1] == X_[i2])
|
||||||
return y_[i1] < y_[i2];
|
return y_[i1] < y_[i2];
|
||||||
else
|
else
|
||||||
@@ -206,7 +221,7 @@ namespace mdlp {
|
|||||||
size_t end;
|
size_t end;
|
||||||
for (size_t idx = 0; idx < cutPoints.size(); idx++) {
|
for (size_t idx = 0; idx < cutPoints.size(); idx++) {
|
||||||
end = begin;
|
end = begin;
|
||||||
while (X[indices[end]] < cutPoints[idx] && end < X.size())
|
while (end < indices.size() && safe_X_access(end) < cutPoints[idx] && end < X.size())
|
||||||
end++;
|
end++;
|
||||||
entropy = metrics.entropy(begin, end);
|
entropy = metrics.entropy(begin, end);
|
||||||
if (entropy > maxEntropy) {
|
if (entropy > maxEntropy) {
|
||||||
|
@@ -39,6 +39,33 @@ namespace mdlp {
|
|||||||
size_t getCandidate(size_t, size_t);
|
size_t getCandidate(size_t, size_t);
|
||||||
size_t compute_max_num_cut_points() const;
|
size_t compute_max_num_cut_points() const;
|
||||||
pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t);
|
pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t);
|
||||||
|
private:
|
||||||
|
inline precision_t safe_X_access(size_t idx) const {
|
||||||
|
if (idx >= indices.size()) {
|
||||||
|
throw std::out_of_range("Index out of bounds for indices array");
|
||||||
|
}
|
||||||
|
size_t real_idx = indices[idx];
|
||||||
|
if (real_idx >= X.size()) {
|
||||||
|
throw std::out_of_range("Index out of bounds for X array");
|
||||||
|
}
|
||||||
|
return X[real_idx];
|
||||||
|
}
|
||||||
|
inline label_t safe_y_access(size_t idx) const {
|
||||||
|
if (idx >= indices.size()) {
|
||||||
|
throw std::out_of_range("Index out of bounds for indices array");
|
||||||
|
}
|
||||||
|
size_t real_idx = indices[idx];
|
||||||
|
if (real_idx >= y.size()) {
|
||||||
|
throw std::out_of_range("Index out of bounds for y array");
|
||||||
|
}
|
||||||
|
return y[real_idx];
|
||||||
|
}
|
||||||
|
inline size_t safe_subtract(size_t a, size_t b) const {
|
||||||
|
if (b > a) {
|
||||||
|
throw std::underflow_error("Subtraction would cause underflow");
|
||||||
|
}
|
||||||
|
return a - b;
|
||||||
|
}
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@@ -10,6 +10,14 @@ namespace mdlp {
|
|||||||
|
|
||||||
labels_t& Discretizer::transform(const samples_t& data)
|
labels_t& Discretizer::transform(const samples_t& data)
|
||||||
{
|
{
|
||||||
|
// Input validation
|
||||||
|
if (data.empty()) {
|
||||||
|
throw std::invalid_argument("Data for transformation cannot be empty");
|
||||||
|
}
|
||||||
|
if (cutPoints.size() < 2) {
|
||||||
|
throw std::runtime_error("Discretizer not fitted yet or no valid cut points found");
|
||||||
|
}
|
||||||
|
|
||||||
discretizedData.clear();
|
discretizedData.clear();
|
||||||
discretizedData.reserve(data.size());
|
discretizedData.reserve(data.size());
|
||||||
// CutPoints always have at least two items
|
// CutPoints always have at least two items
|
||||||
@@ -31,6 +39,26 @@ namespace mdlp {
|
|||||||
}
|
}
|
||||||
void Discretizer::fit_t(const torch::Tensor& X_, const torch::Tensor& y_)
|
void Discretizer::fit_t(const torch::Tensor& X_, const torch::Tensor& y_)
|
||||||
{
|
{
|
||||||
|
// Validate tensor properties for security
|
||||||
|
if (!X_.is_contiguous() || !y_.is_contiguous()) {
|
||||||
|
throw std::invalid_argument("Tensors must be contiguous");
|
||||||
|
}
|
||||||
|
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
|
||||||
|
throw std::invalid_argument("Only 1D tensors supported");
|
||||||
|
}
|
||||||
|
if (X_.dtype() != torch::kFloat32) {
|
||||||
|
throw std::invalid_argument("X tensor must be Float32 type");
|
||||||
|
}
|
||||||
|
if (y_.dtype() != torch::kInt32) {
|
||||||
|
throw std::invalid_argument("y tensor must be Int32 type");
|
||||||
|
}
|
||||||
|
if (X_.numel() != y_.numel()) {
|
||||||
|
throw std::invalid_argument("X and y tensors must have same number of elements");
|
||||||
|
}
|
||||||
|
if (X_.numel() == 0) {
|
||||||
|
throw std::invalid_argument("Tensors cannot be empty");
|
||||||
|
}
|
||||||
|
|
||||||
auto num_elements = X_.numel();
|
auto num_elements = X_.numel();
|
||||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||||
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
|
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
|
||||||
@@ -38,6 +66,20 @@ namespace mdlp {
|
|||||||
}
|
}
|
||||||
torch::Tensor Discretizer::transform_t(const torch::Tensor& X_)
|
torch::Tensor Discretizer::transform_t(const torch::Tensor& X_)
|
||||||
{
|
{
|
||||||
|
// Validate tensor properties for security
|
||||||
|
if (!X_.is_contiguous()) {
|
||||||
|
throw std::invalid_argument("Tensor must be contiguous");
|
||||||
|
}
|
||||||
|
if (X_.sizes().size() != 1) {
|
||||||
|
throw std::invalid_argument("Only 1D tensors supported");
|
||||||
|
}
|
||||||
|
if (X_.dtype() != torch::kFloat32) {
|
||||||
|
throw std::invalid_argument("X tensor must be Float32 type");
|
||||||
|
}
|
||||||
|
if (X_.numel() == 0) {
|
||||||
|
throw std::invalid_argument("Tensor cannot be empty");
|
||||||
|
}
|
||||||
|
|
||||||
auto num_elements = X_.numel();
|
auto num_elements = X_.numel();
|
||||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||||
auto result = transform(X);
|
auto result = transform(X);
|
||||||
@@ -45,6 +87,26 @@ namespace mdlp {
|
|||||||
}
|
}
|
||||||
torch::Tensor Discretizer::fit_transform_t(const torch::Tensor& X_, const torch::Tensor& y_)
|
torch::Tensor Discretizer::fit_transform_t(const torch::Tensor& X_, const torch::Tensor& y_)
|
||||||
{
|
{
|
||||||
|
// Validate tensor properties for security
|
||||||
|
if (!X_.is_contiguous() || !y_.is_contiguous()) {
|
||||||
|
throw std::invalid_argument("Tensors must be contiguous");
|
||||||
|
}
|
||||||
|
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
|
||||||
|
throw std::invalid_argument("Only 1D tensors supported");
|
||||||
|
}
|
||||||
|
if (X_.dtype() != torch::kFloat32) {
|
||||||
|
throw std::invalid_argument("X tensor must be Float32 type");
|
||||||
|
}
|
||||||
|
if (y_.dtype() != torch::kInt32) {
|
||||||
|
throw std::invalid_argument("y tensor must be Int32 type");
|
||||||
|
}
|
||||||
|
if (X_.numel() != y_.numel()) {
|
||||||
|
throw std::invalid_argument("X and y tensors must have same number of elements");
|
||||||
|
}
|
||||||
|
if (X_.numel() == 0) {
|
||||||
|
throw std::invalid_argument("Tensors cannot be empty");
|
||||||
|
}
|
||||||
|
|
||||||
auto num_elements = X_.numel();
|
auto num_elements = X_.numel();
|
||||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||||
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
|
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
|
||||||
|
@@ -26,6 +26,7 @@ namespace mdlp {
|
|||||||
|
|
||||||
void Metrics::setData(const labels_t& y_, const indices_t& indices_)
|
void Metrics::setData(const labels_t& y_, const indices_t& indices_)
|
||||||
{
|
{
|
||||||
|
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||||
indices = indices_;
|
indices = indices_;
|
||||||
y = y_;
|
y = y_;
|
||||||
numClasses = computeNumClasses(0, indices.size());
|
numClasses = computeNumClasses(0, indices.size());
|
||||||
@@ -35,15 +36,23 @@ namespace mdlp {
|
|||||||
|
|
||||||
precision_t Metrics::entropy(size_t start, size_t end)
|
precision_t Metrics::entropy(size_t start, size_t end)
|
||||||
{
|
{
|
||||||
|
if (end - start < 2)
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
// Check cache first with read lock
|
||||||
|
{
|
||||||
|
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||||
|
if (entropyCache.find({ start, end }) != entropyCache.end()) {
|
||||||
|
return entropyCache[{start, end}];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compute entropy outside of lock
|
||||||
precision_t p;
|
precision_t p;
|
||||||
precision_t ventropy = 0;
|
precision_t ventropy = 0;
|
||||||
int nElements = 0;
|
int nElements = 0;
|
||||||
labels_t counts(numClasses + 1, 0);
|
labels_t counts(numClasses + 1, 0);
|
||||||
if (end - start < 2)
|
|
||||||
return 0;
|
|
||||||
if (entropyCache.find({ start, end }) != entropyCache.end()) {
|
|
||||||
return entropyCache[{start, end}];
|
|
||||||
}
|
|
||||||
for (auto i = &indices[start]; i != &indices[end]; ++i) {
|
for (auto i = &indices[start]; i != &indices[end]; ++i) {
|
||||||
counts[y[*i]]++;
|
counts[y[*i]]++;
|
||||||
nElements++;
|
nElements++;
|
||||||
@@ -54,12 +63,27 @@ namespace mdlp {
|
|||||||
ventropy -= p * log2(p);
|
ventropy -= p * log2(p);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
entropyCache[{start, end}] = ventropy;
|
|
||||||
|
// Update cache with write lock
|
||||||
|
{
|
||||||
|
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||||
|
entropyCache[{start, end}] = ventropy;
|
||||||
|
}
|
||||||
|
|
||||||
return ventropy;
|
return ventropy;
|
||||||
}
|
}
|
||||||
|
|
||||||
precision_t Metrics::informationGain(size_t start, size_t cut, size_t end)
|
precision_t Metrics::informationGain(size_t start, size_t cut, size_t end)
|
||||||
{
|
{
|
||||||
|
// Check cache first with read lock
|
||||||
|
{
|
||||||
|
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||||
|
if (igCache.find(make_tuple(start, cut, end)) != igCache.end()) {
|
||||||
|
return igCache[make_tuple(start, cut, end)];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compute information gain outside of lock
|
||||||
precision_t iGain;
|
precision_t iGain;
|
||||||
precision_t entropyInterval;
|
precision_t entropyInterval;
|
||||||
precision_t entropyLeft;
|
precision_t entropyLeft;
|
||||||
@@ -67,9 +91,7 @@ namespace mdlp {
|
|||||||
size_t nElementsLeft = cut - start;
|
size_t nElementsLeft = cut - start;
|
||||||
size_t nElementsRight = end - cut;
|
size_t nElementsRight = end - cut;
|
||||||
size_t nElements = end - start;
|
size_t nElements = end - start;
|
||||||
if (igCache.find(make_tuple(start, cut, end)) != igCache.end()) {
|
|
||||||
return igCache[make_tuple(start, cut, end)];
|
|
||||||
}
|
|
||||||
entropyInterval = entropy(start, end);
|
entropyInterval = entropy(start, end);
|
||||||
entropyLeft = entropy(start, cut);
|
entropyLeft = entropy(start, cut);
|
||||||
entropyRight = entropy(cut, end);
|
entropyRight = entropy(cut, end);
|
||||||
@@ -77,7 +99,13 @@ namespace mdlp {
|
|||||||
(static_cast<precision_t>(nElementsLeft) * entropyLeft +
|
(static_cast<precision_t>(nElementsLeft) * entropyLeft +
|
||||||
static_cast<precision_t>(nElementsRight) * entropyRight) /
|
static_cast<precision_t>(nElementsRight) * entropyRight) /
|
||||||
static_cast<precision_t>(nElements);
|
static_cast<precision_t>(nElements);
|
||||||
igCache[make_tuple(start, cut, end)] = iGain;
|
|
||||||
|
// Update cache with write lock
|
||||||
|
{
|
||||||
|
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||||
|
igCache[make_tuple(start, cut, end)] = iGain;
|
||||||
|
}
|
||||||
|
|
||||||
return iGain;
|
return iGain;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@@ -8,6 +8,7 @@
|
|||||||
#define CCMETRICS_H
|
#define CCMETRICS_H
|
||||||
|
|
||||||
#include "typesFImdlp.h"
|
#include "typesFImdlp.h"
|
||||||
|
#include <mutex>
|
||||||
|
|
||||||
namespace mdlp {
|
namespace mdlp {
|
||||||
class Metrics {
|
class Metrics {
|
||||||
@@ -15,6 +16,7 @@ namespace mdlp {
|
|||||||
labels_t& y;
|
labels_t& y;
|
||||||
indices_t& indices;
|
indices_t& indices;
|
||||||
int numClasses;
|
int numClasses;
|
||||||
|
mutable std::mutex cache_mutex;
|
||||||
cacheEnt_t entropyCache = cacheEnt_t();
|
cacheEnt_t entropyCache = cacheEnt_t();
|
||||||
cacheIg_t igCache = cacheIg_t();
|
cacheIg_t igCache = cacheIg_t();
|
||||||
public:
|
public:
|
||||||
|
Reference in New Issue
Block a user