mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-15 23:45:57 +00:00
Initial commit
This commit is contained in:
2
tests/.gitignore
vendored
Normal file
2
tests/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
build
|
||||
build/*
|
32
tests/CMakeLists.txt
Normal file
32
tests/CMakeLists.txt
Normal file
@@ -0,0 +1,32 @@
|
||||
cmake_minimum_required(VERSION 3.14)
|
||||
project(FImdlp)
|
||||
|
||||
# GoogleTest requires at least C++14
|
||||
set(CMAKE_CXX_STANDARD 14)
|
||||
include(FetchContent)
|
||||
|
||||
include_directories(${GTEST_INCLUDE_DIRS})
|
||||
|
||||
FetchContent_Declare(
|
||||
googletest
|
||||
URL https://github.com/google/googletest/archive/03597a01ee50ed33e9dfd640b249b4be3799d395.zip
|
||||
)
|
||||
# For Windows: Prevent overriding the parent project's compiler/linker settings
|
||||
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
|
||||
FetchContent_MakeAvailable(googletest)
|
||||
|
||||
enable_testing()
|
||||
|
||||
add_executable(Metrics_unittest ../Metrics.cpp Metrics_unittest.cpp)
|
||||
add_executable(FImdlp_unittest ../CPPFImdlp.cpp ../Metrics.cpp FImdlp_unittest.cpp)
|
||||
target_link_libraries(Metrics_unittest GTest::gtest_main)
|
||||
target_link_libraries(FImdlp_unittest GTest::gtest_main)
|
||||
target_compile_options(Metrics_unittest PRIVATE --coverage)
|
||||
target_compile_options(FImdlp_unittest PRIVATE --coverage)
|
||||
target_link_options(Metrics_unittest PRIVATE --coverage)
|
||||
target_link_options(FImdlp_unittest PRIVATE --coverage)
|
||||
|
||||
include(GoogleTest)
|
||||
gtest_discover_tests(Metrics_unittest)
|
||||
gtest_discover_tests(FImdlp_unittest)
|
||||
|
141
tests/FImdlp_unittest.cpp
Normal file
141
tests/FImdlp_unittest.cpp
Normal file
@@ -0,0 +1,141 @@
|
||||
#include "gtest/gtest.h"
|
||||
#include "../Metrics.h"
|
||||
#include "../CPPFImdlp.h"
|
||||
#include <iostream>
|
||||
|
||||
namespace mdlp {
|
||||
class TestFImdlp : public CPPFImdlp, public testing::Test {
|
||||
public:
|
||||
precision_t precision = 0.000001;
|
||||
|
||||
TestFImdlp() : CPPFImdlp(false) {}
|
||||
|
||||
void SetUp() {
|
||||
// 5.0, 5.1, 5.1, 5.1, 5.2, 5.3, 5.6, 5.7, 5.9, 6.0]
|
||||
//(5.0, 1) (5.1, 1) (5.1, 2) (5.1, 2) (5.2, 1) (5.3, 1) (5.6, 2) (5.7, 1) (5.9, 2) (6.0, 2)
|
||||
X = {5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9};
|
||||
y = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2};
|
||||
proposal = false;
|
||||
fit(X, y);
|
||||
}
|
||||
|
||||
void setProposal(bool value) {
|
||||
proposal = value;
|
||||
}
|
||||
|
||||
// void initIndices()
|
||||
// {
|
||||
// indices = indices_t();
|
||||
// }
|
||||
void checkSortedVector() {
|
||||
indices_t testSortedIndices = sortIndices(X);
|
||||
precision_t prev = X[testSortedIndices[0]];
|
||||
for (auto i = 0; i < X.size(); ++i) {
|
||||
EXPECT_EQ(testSortedIndices[i], indices[i]);
|
||||
EXPECT_LE(prev, X[testSortedIndices[i]]);
|
||||
prev = X[testSortedIndices[i]];
|
||||
}
|
||||
}
|
||||
|
||||
void checkCutPoints(cutPoints_t &expected) {
|
||||
int expectedSize = expected.size();
|
||||
EXPECT_EQ(cutPoints.size(), expectedSize);
|
||||
for (auto i = 0; i < cutPoints.size(); i++) {
|
||||
EXPECT_NEAR(cutPoints[i], expected[i], precision);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T, typename A>
|
||||
void checkVectors(std::vector<T, A> const &expected, std::vector<T, A> const &computed) {
|
||||
EXPECT_EQ(expected.size(), computed.size());
|
||||
ASSERT_EQ(expected.size(), computed.size());
|
||||
for (auto i = 0; i < expected.size(); i++) {
|
||||
EXPECT_NEAR(expected[i], computed[i],precision);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST_F(TestFImdlp, FitErrorEmptyDataset) {
|
||||
X = samples_t();
|
||||
y = labels_t();
|
||||
EXPECT_THROW(fit(X, y), std::invalid_argument);
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, FitErrorDifferentSize) {
|
||||
X = {1, 2, 3};
|
||||
y = {1, 2};
|
||||
EXPECT_THROW(fit(X, y), std::invalid_argument);
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SortIndices) {
|
||||
X = {5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9};
|
||||
indices = {4, 3, 6, 8, 2, 1, 5, 0, 9, 7};
|
||||
checkSortedVector();
|
||||
X = {5.77, 5.88, 5.99};
|
||||
indices = {0, 1, 2};
|
||||
checkSortedVector();
|
||||
X = {5.33, 5.22, 5.11};
|
||||
indices = {2, 1, 0};
|
||||
checkSortedVector();
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, TestDataset) {
|
||||
proposal = false;
|
||||
fit(X, y);
|
||||
computeCutPointsOriginal(0, 10);
|
||||
cutPoints_t expected = {5.6499996185302734};
|
||||
vector<precision_t> computed = getCutPoints();
|
||||
computed = getCutPoints();
|
||||
int expectedSize = expected.size();
|
||||
EXPECT_EQ(computed.size(), expected.size());
|
||||
for (auto i = 0; i < expectedSize; i++) {
|
||||
EXPECT_NEAR(computed[i], expected[i], precision);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, ComputeCutPointsOriginal) {
|
||||
cutPoints_t expected = {5.65};
|
||||
proposal = false;
|
||||
computeCutPointsOriginal(0, 10);
|
||||
checkCutPoints(expected);
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, ComputeCutPointsOriginalGCase) {
|
||||
cutPoints_t expected;
|
||||
proposal = false;
|
||||
expected = {2};
|
||||
samples_t X_ = {0, 1, 2, 2};
|
||||
labels_t y_ = {1, 1, 1, 2};
|
||||
fit(X_, y_);
|
||||
checkCutPoints(expected);
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, ComputeCutPointsProposal) {
|
||||
proposal = true;
|
||||
cutPoints_t expected;
|
||||
expected = {};
|
||||
fit(X, y);
|
||||
computeCutPointsProposal();
|
||||
checkCutPoints(expected);
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, ComputeCutPointsProposalGCase) {
|
||||
cutPoints_t expected;
|
||||
expected = {1.5};
|
||||
proposal = true;
|
||||
samples_t X_ = {0, 1, 2, 2};
|
||||
labels_t y_ = {1, 1, 1, 2};
|
||||
fit(X_, y_);
|
||||
checkCutPoints(expected);
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, GetCutPoints) {
|
||||
samples_t computed, expected = {5.65};
|
||||
proposal = false;
|
||||
computeCutPointsOriginal(0, 10);
|
||||
computed = getCutPoints();
|
||||
for (auto item: cutPoints)
|
||||
cout << setprecision(6) << item << endl;
|
||||
checkVectors(expected, computed);
|
||||
}
|
||||
}
|
43
tests/Metrics_unittest.cpp
Normal file
43
tests/Metrics_unittest.cpp
Normal file
@@ -0,0 +1,43 @@
|
||||
#include "gtest/gtest.h"
|
||||
#include "../Metrics.h"
|
||||
|
||||
|
||||
namespace mdlp {
|
||||
class TestMetrics: public Metrics, public testing::Test {
|
||||
public:
|
||||
labels_t y;
|
||||
samples_t X;
|
||||
indices_t indices;
|
||||
precision_t precision = 0.000001;
|
||||
|
||||
TestMetrics(): Metrics(y, indices) {}
|
||||
void SetUp()
|
||||
{
|
||||
y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
||||
indices = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
||||
setData(y, indices);
|
||||
}
|
||||
};
|
||||
TEST_F(TestMetrics, NumClasses)
|
||||
{
|
||||
y = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
||||
EXPECT_EQ(1, computeNumClasses(4, 8));
|
||||
EXPECT_EQ(2, computeNumClasses(0, 10));
|
||||
EXPECT_EQ(2, computeNumClasses(8, 10));
|
||||
}
|
||||
TEST_F(TestMetrics, Entropy)
|
||||
{
|
||||
EXPECT_EQ(1, entropy(0, 10));
|
||||
EXPECT_EQ(0, entropy(0, 5));
|
||||
y = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
||||
setData(y, indices);
|
||||
ASSERT_NEAR(0.468996, entropy(0, 10), precision);
|
||||
}
|
||||
TEST_F(TestMetrics, InformationGain)
|
||||
{
|
||||
ASSERT_NEAR(1, informationGain(0, 5, 10), precision);
|
||||
y = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
||||
setData(y, indices);
|
||||
ASSERT_NEAR(0.108032, informationGain(0, 5, 10), precision);
|
||||
}
|
||||
}
|
4
tests/cover
Executable file
4
tests/cover
Executable file
@@ -0,0 +1,4 @@
|
||||
rm -fr lcoverage/*
|
||||
lcov --capture --directory ./ --output-file lcoverage/main_coverage.info
|
||||
genhtml lcoverage/main_coverage.info --output-directory lcoverage
|
||||
open lcoverage/index.html
|
225
tests/datasets/iris.arff
Executable file
225
tests/datasets/iris.arff
Executable file
@@ -0,0 +1,225 @@
|
||||
% 1. Title: Iris Plants Database
|
||||
%
|
||||
% 2. Sources:
|
||||
% (a) Creator: R.A. Fisher
|
||||
% (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
|
||||
% (c) Date: July, 1988
|
||||
%
|
||||
% 3. Past Usage:
|
||||
% - Publications: too many to mention!!! Here are a few.
|
||||
% 1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"
|
||||
% Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
|
||||
% to Mathematical Statistics" (John Wiley, NY, 1950).
|
||||
% 2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
|
||||
% (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
|
||||
% 3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
|
||||
% Structure and Classification Rule for Recognition in Partially Exposed
|
||||
% Environments". IEEE Transactions on Pattern Analysis and Machine
|
||||
% Intelligence, Vol. PAMI-2, No. 1, 67-71.
|
||||
% -- Results:
|
||||
% -- very low misclassification rates (0% for the setosa class)
|
||||
% 4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE
|
||||
% Transactions on Information Theory, May 1972, 431-433.
|
||||
% -- Results:
|
||||
% -- very low misclassification rates again
|
||||
% 5. See also: 1988 MLC Proceedings, 54-64. Cheeseman et al's AUTOCLASS II
|
||||
% conceptual clustering system finds 3 classes in the data.
|
||||
%
|
||||
% 4. Relevant Information:
|
||||
% --- This is perhaps the best known database to be found in the pattern
|
||||
% recognition literature. Fisher's paper is a classic in the field
|
||||
% and is referenced frequently to this day. (See Duda & Hart, for
|
||||
% example.) The data set contains 3 classes of 50 instances each,
|
||||
% where each class refers to a type of iris plant. One class is
|
||||
% linearly separable from the other 2; the latter are NOT linearly
|
||||
% separable from each other.
|
||||
% --- Predicted attribute: class of iris plant.
|
||||
% --- This is an exceedingly simple domain.
|
||||
%
|
||||
% 5. Number of Instances: 150 (50 in each of three classes)
|
||||
%
|
||||
% 6. Number of Attributes: 4 numeric, predictive attributes and the class
|
||||
%
|
||||
% 7. Attribute Information:
|
||||
% 1. sepal length in cm
|
||||
% 2. sepal width in cm
|
||||
% 3. petal length in cm
|
||||
% 4. petal width in cm
|
||||
% 5. class:
|
||||
% -- Iris Setosa
|
||||
% -- Iris Versicolour
|
||||
% -- Iris Virginica
|
||||
%
|
||||
% 8. Missing Attribute Values: None
|
||||
%
|
||||
% Summary Statistics:
|
||||
% Min Max Mean SD Class Correlation
|
||||
% sepal length: 4.3 7.9 5.84 0.83 0.7826
|
||||
% sepal width: 2.0 4.4 3.05 0.43 -0.4194
|
||||
% petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
|
||||
% petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
|
||||
%
|
||||
% 9. Class Distribution: 33.3% for each of 3 classes.
|
||||
|
||||
@RELATION iris
|
||||
|
||||
@ATTRIBUTE sepallength REAL
|
||||
@ATTRIBUTE sepalwidth REAL
|
||||
@ATTRIBUTE petallength REAL
|
||||
@ATTRIBUTE petalwidth REAL
|
||||
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}
|
||||
|
||||
@DATA
|
||||
5.1,3.5,1.4,0.2,Iris-setosa
|
||||
4.9,3.0,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.3,0.2,Iris-setosa
|
||||
4.6,3.1,1.5,0.2,Iris-setosa
|
||||
5.0,3.6,1.4,0.2,Iris-setosa
|
||||
5.4,3.9,1.7,0.4,Iris-setosa
|
||||
4.6,3.4,1.4,0.3,Iris-setosa
|
||||
5.0,3.4,1.5,0.2,Iris-setosa
|
||||
4.4,2.9,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5.4,3.7,1.5,0.2,Iris-setosa
|
||||
4.8,3.4,1.6,0.2,Iris-setosa
|
||||
4.8,3.0,1.4,0.1,Iris-setosa
|
||||
4.3,3.0,1.1,0.1,Iris-setosa
|
||||
5.8,4.0,1.2,0.2,Iris-setosa
|
||||
5.7,4.4,1.5,0.4,Iris-setosa
|
||||
5.4,3.9,1.3,0.4,Iris-setosa
|
||||
5.1,3.5,1.4,0.3,Iris-setosa
|
||||
5.7,3.8,1.7,0.3,Iris-setosa
|
||||
5.1,3.8,1.5,0.3,Iris-setosa
|
||||
5.4,3.4,1.7,0.2,Iris-setosa
|
||||
5.1,3.7,1.5,0.4,Iris-setosa
|
||||
4.6,3.6,1.0,0.2,Iris-setosa
|
||||
5.1,3.3,1.7,0.5,Iris-setosa
|
||||
4.8,3.4,1.9,0.2,Iris-setosa
|
||||
5.0,3.0,1.6,0.2,Iris-setosa
|
||||
5.0,3.4,1.6,0.4,Iris-setosa
|
||||
5.2,3.5,1.5,0.2,Iris-setosa
|
||||
5.2,3.4,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.6,0.2,Iris-setosa
|
||||
4.8,3.1,1.6,0.2,Iris-setosa
|
||||
5.4,3.4,1.5,0.4,Iris-setosa
|
||||
5.2,4.1,1.5,0.1,Iris-setosa
|
||||
5.5,4.2,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5.0,3.2,1.2,0.2,Iris-setosa
|
||||
5.5,3.5,1.3,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
4.4,3.0,1.3,0.2,Iris-setosa
|
||||
5.1,3.4,1.5,0.2,Iris-setosa
|
||||
5.0,3.5,1.3,0.3,Iris-setosa
|
||||
4.5,2.3,1.3,0.3,Iris-setosa
|
||||
4.4,3.2,1.3,0.2,Iris-setosa
|
||||
5.0,3.5,1.6,0.6,Iris-setosa
|
||||
5.1,3.8,1.9,0.4,Iris-setosa
|
||||
4.8,3.0,1.4,0.3,Iris-setosa
|
||||
5.1,3.8,1.6,0.2,Iris-setosa
|
||||
4.6,3.2,1.4,0.2,Iris-setosa
|
||||
5.3,3.7,1.5,0.2,Iris-setosa
|
||||
5.0,3.3,1.4,0.2,Iris-setosa
|
||||
7.0,3.2,4.7,1.4,Iris-versicolor
|
||||
6.4,3.2,4.5,1.5,Iris-versicolor
|
||||
6.9,3.1,4.9,1.5,Iris-versicolor
|
||||
5.5,2.3,4.0,1.3,Iris-versicolor
|
||||
6.5,2.8,4.6,1.5,Iris-versicolor
|
||||
5.7,2.8,4.5,1.3,Iris-versicolor
|
||||
6.3,3.3,4.7,1.6,Iris-versicolor
|
||||
4.9,2.4,3.3,1.0,Iris-versicolor
|
||||
6.6,2.9,4.6,1.3,Iris-versicolor
|
||||
5.2,2.7,3.9,1.4,Iris-versicolor
|
||||
5.0,2.0,3.5,1.0,Iris-versicolor
|
||||
5.9,3.0,4.2,1.5,Iris-versicolor
|
||||
6.0,2.2,4.0,1.0,Iris-versicolor
|
||||
6.1,2.9,4.7,1.4,Iris-versicolor
|
||||
5.6,2.9,3.6,1.3,Iris-versicolor
|
||||
6.7,3.1,4.4,1.4,Iris-versicolor
|
||||
5.6,3.0,4.5,1.5,Iris-versicolor
|
||||
5.8,2.7,4.1,1.0,Iris-versicolor
|
||||
6.2,2.2,4.5,1.5,Iris-versicolor
|
||||
5.6,2.5,3.9,1.1,Iris-versicolor
|
||||
5.9,3.2,4.8,1.8,Iris-versicolor
|
||||
6.1,2.8,4.0,1.3,Iris-versicolor
|
||||
6.3,2.5,4.9,1.5,Iris-versicolor
|
||||
6.1,2.8,4.7,1.2,Iris-versicolor
|
||||
6.4,2.9,4.3,1.3,Iris-versicolor
|
||||
6.6,3.0,4.4,1.4,Iris-versicolor
|
||||
6.8,2.8,4.8,1.4,Iris-versicolor
|
||||
6.7,3.0,5.0,1.7,Iris-versicolor
|
||||
6.0,2.9,4.5,1.5,Iris-versicolor
|
||||
5.7,2.6,3.5,1.0,Iris-versicolor
|
||||
5.5,2.4,3.8,1.1,Iris-versicolor
|
||||
5.5,2.4,3.7,1.0,Iris-versicolor
|
||||
5.8,2.7,3.9,1.2,Iris-versicolor
|
||||
6.0,2.7,5.1,1.6,Iris-versicolor
|
||||
5.4,3.0,4.5,1.5,Iris-versicolor
|
||||
6.0,3.4,4.5,1.6,Iris-versicolor
|
||||
6.7,3.1,4.7,1.5,Iris-versicolor
|
||||
6.3,2.3,4.4,1.3,Iris-versicolor
|
||||
5.6,3.0,4.1,1.3,Iris-versicolor
|
||||
5.5,2.5,4.0,1.3,Iris-versicolor
|
||||
5.5,2.6,4.4,1.2,Iris-versicolor
|
||||
6.1,3.0,4.6,1.4,Iris-versicolor
|
||||
5.8,2.6,4.0,1.2,Iris-versicolor
|
||||
5.0,2.3,3.3,1.0,Iris-versicolor
|
||||
5.6,2.7,4.2,1.3,Iris-versicolor
|
||||
5.7,3.0,4.2,1.2,Iris-versicolor
|
||||
5.7,2.9,4.2,1.3,Iris-versicolor
|
||||
6.2,2.9,4.3,1.3,Iris-versicolor
|
||||
5.1,2.5,3.0,1.1,Iris-versicolor
|
||||
5.7,2.8,4.1,1.3,Iris-versicolor
|
||||
6.3,3.3,6.0,2.5,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
7.1,3.0,5.9,2.1,Iris-virginica
|
||||
6.3,2.9,5.6,1.8,Iris-virginica
|
||||
6.5,3.0,5.8,2.2,Iris-virginica
|
||||
7.6,3.0,6.6,2.1,Iris-virginica
|
||||
4.9,2.5,4.5,1.7,Iris-virginica
|
||||
7.3,2.9,6.3,1.8,Iris-virginica
|
||||
6.7,2.5,5.8,1.8,Iris-virginica
|
||||
7.2,3.6,6.1,2.5,Iris-virginica
|
||||
6.5,3.2,5.1,2.0,Iris-virginica
|
||||
6.4,2.7,5.3,1.9,Iris-virginica
|
||||
6.8,3.0,5.5,2.1,Iris-virginica
|
||||
5.7,2.5,5.0,2.0,Iris-virginica
|
||||
5.8,2.8,5.1,2.4,Iris-virginica
|
||||
6.4,3.2,5.3,2.3,Iris-virginica
|
||||
6.5,3.0,5.5,1.8,Iris-virginica
|
||||
7.7,3.8,6.7,2.2,Iris-virginica
|
||||
7.7,2.6,6.9,2.3,Iris-virginica
|
||||
6.0,2.2,5.0,1.5,Iris-virginica
|
||||
6.9,3.2,5.7,2.3,Iris-virginica
|
||||
5.6,2.8,4.9,2.0,Iris-virginica
|
||||
7.7,2.8,6.7,2.0,Iris-virginica
|
||||
6.3,2.7,4.9,1.8,Iris-virginica
|
||||
6.7,3.3,5.7,2.1,Iris-virginica
|
||||
7.2,3.2,6.0,1.8,Iris-virginica
|
||||
6.2,2.8,4.8,1.8,Iris-virginica
|
||||
6.1,3.0,4.9,1.8,Iris-virginica
|
||||
6.4,2.8,5.6,2.1,Iris-virginica
|
||||
7.2,3.0,5.8,1.6,Iris-virginica
|
||||
7.4,2.8,6.1,1.9,Iris-virginica
|
||||
7.9,3.8,6.4,2.0,Iris-virginica
|
||||
6.4,2.8,5.6,2.2,Iris-virginica
|
||||
6.3,2.8,5.1,1.5,Iris-virginica
|
||||
6.1,2.6,5.6,1.4,Iris-virginica
|
||||
7.7,3.0,6.1,2.3,Iris-virginica
|
||||
6.3,3.4,5.6,2.4,Iris-virginica
|
||||
6.4,3.1,5.5,1.8,Iris-virginica
|
||||
6.0,3.0,4.8,1.8,Iris-virginica
|
||||
6.9,3.1,5.4,2.1,Iris-virginica
|
||||
6.7,3.1,5.6,2.4,Iris-virginica
|
||||
6.9,3.1,5.1,2.3,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
6.8,3.2,5.9,2.3,Iris-virginica
|
||||
6.7,3.3,5.7,2.5,Iris-virginica
|
||||
6.7,3.0,5.2,2.3,Iris-virginica
|
||||
6.3,2.5,5.0,1.9,Iris-virginica
|
||||
6.5,3.0,5.2,2.0,Iris-virginica
|
||||
6.2,3.4,5.4,2.3,Iris-virginica
|
||||
5.9,3.0,5.1,1.8,Iris-virginica
|
||||
%
|
||||
%
|
||||
%
|
10177
tests/datasets/kdd_JapaneseVowels.arff
Executable file
10177
tests/datasets/kdd_JapaneseVowels.arff
Executable file
File diff suppressed because it is too large
Load Diff
20191
tests/datasets/letter.arff
Executable file
20191
tests/datasets/letter.arff
Executable file
File diff suppressed because it is too large
Load Diff
2306
tests/datasets/mfeat-factors.arff
Executable file
2306
tests/datasets/mfeat-factors.arff
Executable file
File diff suppressed because it is too large
Load Diff
12
tests/test
Executable file
12
tests/test
Executable file
@@ -0,0 +1,12 @@
|
||||
cmake -S . -B build -Wno-dev
|
||||
if test $? -ne 0; then
|
||||
echo "Error in creating build commands."
|
||||
exit 1
|
||||
fi
|
||||
cmake --build build
|
||||
if test $? -ne 0; then
|
||||
echo "Error in build command."
|
||||
exit 1
|
||||
fi
|
||||
cd build
|
||||
ctest --output-on-failure
|
Reference in New Issue
Block a user