mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-16 07:55:58 +00:00
Fix conan (#10)
* Fix debug conan build target * Add viewcoverage and fix coverage generation * Add more tests to cover new integrity checks * Add tests to accomplish 100% * Fix conan-create makefile target
This commit is contained in:
committed by
GitHub
parent
c1759ba1ce
commit
6d8b55a808
@@ -11,6 +11,16 @@
|
||||
#include <ArffFiles.hpp>
|
||||
#include "BinDisc.h"
|
||||
#include "Experiments.hpp"
|
||||
#include <cmath>
|
||||
|
||||
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
|
||||
try { \
|
||||
stmt; \
|
||||
} catch (const etype& ex) { \
|
||||
EXPECT_EQ(whatstring, std::string(ex.what())); \
|
||||
throw; \
|
||||
} \
|
||||
, etype)
|
||||
|
||||
namespace mdlp {
|
||||
const float margin = 1e-4;
|
||||
@@ -400,4 +410,64 @@ namespace mdlp {
|
||||
}
|
||||
// std::cout << "* Number of experiments tested: " << num << std::endl;
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, FitDataSizeTooSmall)
|
||||
{
|
||||
// Test when data size is smaller than n_bins
|
||||
samples_t X = { 1.0, 2.0 }; // Only 2 elements for 3 bins
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X), std::invalid_argument, "Input data size must be at least equal to n_bins");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3Q, FitDataSizeTooSmall)
|
||||
{
|
||||
// Test when data size is smaller than n_bins
|
||||
samples_t X = { 1.0, 2.0 }; // Only 2 elements for 3 bins
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X), std::invalid_argument, "Input data size must be at least equal to n_bins");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, FitWithYEmptyX)
|
||||
{
|
||||
// Test fit(X, y) with empty X
|
||||
samples_t X = {};
|
||||
labels_t y = { 1, 2, 3 };
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X, y), std::invalid_argument, "X cannot be empty");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, LinspaceInvalidNumPoints)
|
||||
{
|
||||
// Test linspace with num < 2
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, 1.0f, 1), std::invalid_argument, "Number of points must be at least 2 for linspace");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, LinspaceNaNValues)
|
||||
{
|
||||
// Test linspace with NaN values
|
||||
float nan_val = std::numeric_limits<float>::quiet_NaN();
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(nan_val, 1.0f, 3), std::invalid_argument, "Start and end values cannot be NaN");
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, nan_val, 3), std::invalid_argument, "Start and end values cannot be NaN");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, LinspaceInfiniteValues)
|
||||
{
|
||||
// Test linspace with infinite values
|
||||
float inf_val = std::numeric_limits<float>::infinity();
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(inf_val, 1.0f, 3), std::invalid_argument, "Start and end values cannot be infinite");
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, inf_val, 3), std::invalid_argument, "Start and end values cannot be infinite");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, PercentileEmptyData)
|
||||
{
|
||||
// Test percentile with empty data
|
||||
samples_t empty_data = {};
|
||||
std::vector<precision_t> percentiles = { 25.0f, 50.0f, 75.0f };
|
||||
EXPECT_THROW_WITH_MESSAGE(percentile(empty_data, percentiles), std::invalid_argument, "Data cannot be empty for percentile calculation");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, PercentileEmptyPercentiles)
|
||||
{
|
||||
// Test percentile with empty percentiles
|
||||
samples_t data = { 1.0f, 2.0f, 3.0f };
|
||||
std::vector<precision_t> empty_percentiles = {};
|
||||
EXPECT_THROW_WITH_MESSAGE(percentile(data, empty_percentiles), std::invalid_argument, "Percentiles cannot be empty");
|
||||
}
|
||||
}
|
||||
|
@@ -1,6 +1,7 @@
|
||||
|
||||
find_package(arff-files REQUIRED)
|
||||
find_package(GTest REQUIRED)
|
||||
find_package(Torch CONFIG REQUIRED)
|
||||
|
||||
include_directories(
|
||||
${libtorch_INCLUDE_DIRS_DEBUG}
|
||||
|
@@ -13,6 +13,15 @@
|
||||
#include "BinDisc.h"
|
||||
#include "CPPFImdlp.h"
|
||||
|
||||
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
|
||||
try { \
|
||||
stmt; \
|
||||
} catch (const etype& ex) { \
|
||||
EXPECT_EQ(whatstring, std::string(ex.what())); \
|
||||
throw; \
|
||||
} \
|
||||
, etype)
|
||||
|
||||
namespace mdlp {
|
||||
const float margin = 1e-4;
|
||||
static std::string set_data_path()
|
||||
@@ -270,4 +279,110 @@ namespace mdlp {
|
||||
EXPECT_EQ(computed[i], expected[i]);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Discretizer, TransformEmptyData)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
samples_t empty_data = {};
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform(empty_data), std::invalid_argument, "Data for transformation cannot be empty");
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TransformNotFitted)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
samples_t data = { 1.0f, 2.0f, 3.0f };
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform(data), std::runtime_error, "Discretizer not fitted yet or no valid cut points found");
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TensorValidationFit)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
|
||||
auto X = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
auto y = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
|
||||
// Test non-1D tensors
|
||||
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_2d, y), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
auto y_2d = torch::tensor({ {1, 2}, {3, 4} }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_2d), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
// Test wrong tensor types
|
||||
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_int, y), std::invalid_argument, "X tensor must be Float32 type");
|
||||
|
||||
auto y_float = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_float), std::invalid_argument, "y tensor must be Int32 type");
|
||||
|
||||
// Test mismatched sizes
|
||||
auto y_short = torch::tensor({ 1, 2 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_short), std::invalid_argument, "X and y tensors must have same number of elements");
|
||||
|
||||
// Test empty tensors
|
||||
auto X_empty = torch::tensor({}, torch::kFloat32);
|
||||
auto y_empty = torch::tensor({}, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_empty, y_empty), std::invalid_argument, "Tensors cannot be empty");
|
||||
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TensorValidationTransform)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
|
||||
// First fit with valid data
|
||||
auto X_fit = torch::tensor({ 1.0f, 2.0f, 3.0f, 4.0f }, torch::kFloat32);
|
||||
auto y_fit = torch::tensor({ 1, 2, 3, 4 }, torch::kInt32);
|
||||
disc->fit_t(X_fit, y_fit);
|
||||
|
||||
// Test non-1D tensor
|
||||
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_2d), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
// Test wrong tensor type
|
||||
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_int), std::invalid_argument, "X tensor must be Float32 type");
|
||||
|
||||
// Test empty tensor
|
||||
auto X_empty = torch::tensor({}, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_empty), std::invalid_argument, "Tensor cannot be empty");
|
||||
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TensorValidationFitTransform)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
|
||||
auto X = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
auto y = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
|
||||
// Test non-1D tensors
|
||||
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_2d, y), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
auto y_2d = torch::tensor({ {1, 2}, {3, 4} }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_2d), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
// Test wrong tensor types
|
||||
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_int, y), std::invalid_argument, "X tensor must be Float32 type");
|
||||
|
||||
auto y_float = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_float), std::invalid_argument, "y tensor must be Int32 type");
|
||||
|
||||
// Test mismatched sizes
|
||||
auto y_short = torch::tensor({ 1, 2 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_short), std::invalid_argument, "X and y tensors must have same number of elements");
|
||||
|
||||
// Test empty tensors
|
||||
auto X_empty = torch::tensor({}, torch::kFloat32);
|
||||
auto y_empty = torch::tensor({}, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_empty, y_empty), std::invalid_argument, "Tensors cannot be empty");
|
||||
|
||||
delete disc;
|
||||
}
|
||||
}
|
||||
|
@@ -167,6 +167,15 @@ namespace mdlp {
|
||||
indices = { 1, 2, 0 };
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SortIndicesOutOfBounds)
|
||||
{
|
||||
// Test for out of bounds exception in sortIndices
|
||||
samples_t X_long = { 1.0f, 2.0f, 3.0f };
|
||||
labels_t y_short = { 1, 2 };
|
||||
EXPECT_THROW_WITH_MESSAGE(sortIndices(X_long, y_short), std::out_of_range, "Index out of bounds in sort comparison");
|
||||
}
|
||||
|
||||
|
||||
TEST_F(TestFImdlp, TestShortDatasets)
|
||||
{
|
||||
vector<precision_t> computed;
|
||||
@@ -364,4 +373,55 @@ namespace mdlp {
|
||||
EXPECT_EQ(computed_ft[i], expected[i]);
|
||||
}
|
||||
}
|
||||
TEST_F(TestFImdlp, SafeXAccessIndexOutOfBounds)
|
||||
{
|
||||
// Test safe_X_access with index out of bounds for indices array
|
||||
X = { 1.0f, 2.0f, 3.0f };
|
||||
y = { 1, 2, 3 };
|
||||
indices = { 0, 1 }; // shorter than expected
|
||||
|
||||
// This should trigger the first exception in safe_X_access (idx >= indices.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_X_access(2), std::out_of_range, "Index out of bounds for indices array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeXAccessXOutOfBounds)
|
||||
{
|
||||
// Test safe_X_access with real_idx out of bounds for X array
|
||||
X = { 1.0f, 2.0f }; // shorter array
|
||||
y = { 1, 2, 3 };
|
||||
indices = { 0, 1, 5 }; // indices[2] = 5 is out of bounds for X
|
||||
|
||||
// This should trigger the second exception in safe_X_access (real_idx >= X.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_X_access(2), std::out_of_range, "Index out of bounds for X array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeYAccessIndexOutOfBounds)
|
||||
{
|
||||
// Test safe_y_access with index out of bounds for indices array
|
||||
X = { 1.0f, 2.0f, 3.0f };
|
||||
y = { 1, 2, 3 };
|
||||
indices = { 0, 1 }; // shorter than expected
|
||||
|
||||
// This should trigger the first exception in safe_y_access (idx >= indices.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_y_access(2), std::out_of_range, "Index out of bounds for indices array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeYAccessYOutOfBounds)
|
||||
{
|
||||
// Test safe_y_access with real_idx out of bounds for y array
|
||||
X = { 1.0f, 2.0f, 3.0f };
|
||||
y = { 1, 2 }; // shorter array
|
||||
indices = { 0, 1, 5 }; // indices[2] = 5 is out of bounds for y
|
||||
|
||||
// This should trigger the second exception in safe_y_access (real_idx >= y.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_y_access(2), std::out_of_range, "Index out of bounds for y array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeSubtractUnderflow)
|
||||
{
|
||||
// Test safe_subtract with underflow condition (b > a)
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_subtract(3, 5), std::underflow_error, "Subtraction would cause underflow");
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
Reference in New Issue
Block a user