252 lines
5.0 KiB
C++
252 lines
5.0 KiB
C++
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdarg.h>
|
|
#include "newton.h"
|
|
|
|
#ifndef min
|
|
template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
|
|
#endif
|
|
|
|
#ifndef max
|
|
template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
extern double dnrm2_(int *, double *, int *);
|
|
extern double ddot_(int *, double *, int *, double *, int *);
|
|
extern int daxpy_(int *, double *, double *, int *, double *, int *);
|
|
extern int dscal_(int *, double *, double *, int *);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
static void default_print(const char *buf)
|
|
{
|
|
fputs(buf,stdout);
|
|
fflush(stdout);
|
|
}
|
|
|
|
// On entry *f must be the function value of w
|
|
// On exit w is updated and *f is the new function value
|
|
double function::linesearch_and_update(double *w, double *s, double *f, double *g, double alpha)
|
|
{
|
|
double gTs = 0;
|
|
double eta = 0.01;
|
|
int n = get_nr_variable();
|
|
int max_num_linesearch = 20;
|
|
double *w_new = new double[n];
|
|
double fold = *f;
|
|
|
|
for (int i=0;i<n;i++)
|
|
gTs += s[i] * g[i];
|
|
|
|
int num_linesearch = 0;
|
|
for(num_linesearch=0; num_linesearch < max_num_linesearch; num_linesearch++)
|
|
{
|
|
for (int i=0;i<n;i++)
|
|
w_new[i] = w[i] + alpha*s[i];
|
|
*f = fun(w_new);
|
|
if (*f - fold <= eta * alpha * gTs)
|
|
break;
|
|
else
|
|
alpha *= 0.5;
|
|
}
|
|
|
|
if (num_linesearch >= max_num_linesearch)
|
|
{
|
|
*f = fold;
|
|
return 0;
|
|
}
|
|
else
|
|
memcpy(w, w_new, sizeof(double)*n);
|
|
|
|
delete [] w_new;
|
|
return alpha;
|
|
}
|
|
|
|
void NEWTON::info(const char *fmt,...)
|
|
{
|
|
char buf[BUFSIZ];
|
|
va_list ap;
|
|
va_start(ap,fmt);
|
|
vsprintf(buf,fmt,ap);
|
|
va_end(ap);
|
|
(*newton_print_string)(buf);
|
|
}
|
|
|
|
NEWTON::NEWTON(const function *fun_obj, double eps, double eps_cg, int max_iter)
|
|
{
|
|
this->fun_obj=const_cast<function *>(fun_obj);
|
|
this->eps=eps;
|
|
this->eps_cg=eps_cg;
|
|
this->max_iter=max_iter;
|
|
newton_print_string = default_print;
|
|
}
|
|
|
|
NEWTON::~NEWTON()
|
|
{
|
|
}
|
|
|
|
void NEWTON::newton(double *w)
|
|
{
|
|
int n = fun_obj->get_nr_variable();
|
|
int i, cg_iter;
|
|
double step_size;
|
|
double f, fold, actred;
|
|
double init_step_size = 1;
|
|
int search = 1, iter = 1, inc = 1;
|
|
double *s = new double[n];
|
|
double *r = new double[n];
|
|
double *g = new double[n];
|
|
|
|
const double alpha_pcg = 0.01;
|
|
double *M = new double[n];
|
|
|
|
// calculate gradient norm at w=0 for stopping condition.
|
|
double *w0 = new double[n];
|
|
for (i=0; i<n; i++)
|
|
w0[i] = 0;
|
|
fun_obj->fun(w0);
|
|
fun_obj->grad(w0, g);
|
|
double gnorm0 = dnrm2_(&n, g, &inc);
|
|
delete [] w0;
|
|
|
|
f = fun_obj->fun(w);
|
|
fun_obj->grad(w, g);
|
|
double gnorm = dnrm2_(&n, g, &inc);
|
|
info("init f %5.3e |g| %5.3e\n", f, gnorm);
|
|
|
|
if (gnorm <= eps*gnorm0)
|
|
search = 0;
|
|
|
|
while (iter <= max_iter && search)
|
|
{
|
|
fun_obj->get_diag_preconditioner(M);
|
|
for(i=0; i<n; i++)
|
|
M[i] = (1-alpha_pcg) + alpha_pcg*M[i];
|
|
cg_iter = pcg(g, M, s, r);
|
|
|
|
fold = f;
|
|
step_size = fun_obj->linesearch_and_update(w, s, &f, g, init_step_size);
|
|
|
|
if (step_size == 0)
|
|
{
|
|
info("WARNING: line search fails\n");
|
|
break;
|
|
}
|
|
|
|
fun_obj->grad(w, g);
|
|
gnorm = dnrm2_(&n, g, &inc);
|
|
|
|
info("iter %2d f %5.3e |g| %5.3e CG %3d step_size %4.2e \n", iter, f, gnorm, cg_iter, step_size);
|
|
|
|
if (gnorm <= eps*gnorm0)
|
|
break;
|
|
if (f < -1.0e+32)
|
|
{
|
|
info("WARNING: f < -1.0e+32\n");
|
|
break;
|
|
}
|
|
actred = fold - f;
|
|
if (fabs(actred) <= 1.0e-12*fabs(f))
|
|
{
|
|
info("WARNING: actred too small\n");
|
|
break;
|
|
}
|
|
|
|
iter++;
|
|
}
|
|
|
|
if(iter >= max_iter)
|
|
info("\nWARNING: reaching max number of Newton iterations\n");
|
|
|
|
delete[] g;
|
|
delete[] r;
|
|
delete[] s;
|
|
delete[] M;
|
|
}
|
|
|
|
int NEWTON::pcg(double *g, double *M, double *s, double *r)
|
|
{
|
|
int i, inc = 1;
|
|
int n = fun_obj->get_nr_variable();
|
|
double one = 1;
|
|
double *d = new double[n];
|
|
double *Hd = new double[n];
|
|
double zTr, znewTrnew, alpha, beta, cgtol, dHd;
|
|
double *z = new double[n];
|
|
double Q = 0, newQ, Qdiff;
|
|
|
|
for (i=0; i<n; i++)
|
|
{
|
|
s[i] = 0;
|
|
r[i] = -g[i];
|
|
z[i] = r[i] / M[i];
|
|
d[i] = z[i];
|
|
}
|
|
|
|
zTr = ddot_(&n, z, &inc, r, &inc);
|
|
double gMinv_norm = sqrt(zTr);
|
|
cgtol = min(eps_cg, sqrt(gMinv_norm));
|
|
int cg_iter = 0;
|
|
int max_cg_iter = max(n, 5);
|
|
|
|
while (cg_iter < max_cg_iter)
|
|
{
|
|
cg_iter++;
|
|
|
|
fun_obj->Hv(d, Hd);
|
|
dHd = ddot_(&n, d, &inc, Hd, &inc);
|
|
// avoid 0/0 in getting alpha
|
|
if (dHd <= 1.0e-16)
|
|
break;
|
|
|
|
alpha = zTr/dHd;
|
|
daxpy_(&n, &alpha, d, &inc, s, &inc);
|
|
alpha = -alpha;
|
|
daxpy_(&n, &alpha, Hd, &inc, r, &inc);
|
|
|
|
// Using quadratic approximation as CG stopping criterion
|
|
newQ = -0.5*(ddot_(&n, s, &inc, r, &inc) - ddot_(&n, s, &inc, g, &inc));
|
|
Qdiff = newQ - Q;
|
|
if (newQ <= 0 && Qdiff <= 0)
|
|
{
|
|
if (cg_iter * Qdiff >= cgtol * newQ)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
info("WARNING: quadratic approximation > 0 or increasing in CG\n");
|
|
break;
|
|
}
|
|
Q = newQ;
|
|
|
|
for (i=0; i<n; i++)
|
|
z[i] = r[i] / M[i];
|
|
znewTrnew = ddot_(&n, z, &inc, r, &inc);
|
|
beta = znewTrnew/zTr;
|
|
dscal_(&n, &beta, d, &inc);
|
|
daxpy_(&n, &one, z, &inc, d, &inc);
|
|
zTr = znewTrnew;
|
|
}
|
|
|
|
if (cg_iter == max_cg_iter)
|
|
info("WARNING: reaching maximal number of CG steps\n");
|
|
|
|
delete[] d;
|
|
delete[] Hd;
|
|
delete[] z;
|
|
|
|
return cg_iter;
|
|
}
|
|
|
|
void NEWTON::set_print_string(void (*print_string) (const char *buf))
|
|
{
|
|
newton_print_string = print_string;
|
|
}
|