First commit
This commit is contained in:
2
libsvm-3.36/python/MANIFEST.in
Normal file
2
libsvm-3.36/python/MANIFEST.in
Normal file
@@ -0,0 +1,2 @@
|
||||
include cpp-source/*
|
||||
include cpp-source/*/*
|
4
libsvm-3.36/python/Makefile
Normal file
4
libsvm-3.36/python/Makefile
Normal file
@@ -0,0 +1,4 @@
|
||||
all = lib
|
||||
|
||||
lib:
|
||||
make -C .. lib
|
511
libsvm-3.36/python/README
Normal file
511
libsvm-3.36/python/README
Normal file
@@ -0,0 +1,511 @@
|
||||
----------------------------------
|
||||
--- Python interface of LIBSVM ---
|
||||
----------------------------------
|
||||
|
||||
Table of Contents
|
||||
=================
|
||||
|
||||
- Introduction
|
||||
- Installation via PyPI
|
||||
- Installation via Sources
|
||||
- Quick Start
|
||||
- Quick Start with Scipy
|
||||
- Design Description
|
||||
- Data Structures
|
||||
- Utility Functions
|
||||
- Additional Information
|
||||
|
||||
Introduction
|
||||
============
|
||||
|
||||
Python (http://www.python.org/) is a programming language suitable for rapid
|
||||
development. This tool provides a simple Python interface to LIBSVM, a library
|
||||
for support vector machines (http://www.csie.ntu.edu.tw/~cjlin/libsvm). The
|
||||
interface is very easy to use as the usage is the same as that of LIBSVM. The
|
||||
interface is developed with the built-in Python library "ctypes."
|
||||
|
||||
Installation via PyPI
|
||||
=====================
|
||||
|
||||
To install the interface from PyPI, execute the following command:
|
||||
|
||||
> pip install -U libsvm-official
|
||||
|
||||
Installation via Sources
|
||||
========================
|
||||
|
||||
Alternatively, you may install the interface from sources by
|
||||
generating the LIBSVM shared library.
|
||||
|
||||
Depending on your use cases, you can choose between local-directory
|
||||
and system-wide installation.
|
||||
|
||||
- Local-directory installation:
|
||||
|
||||
On Unix systems, type
|
||||
|
||||
> make
|
||||
|
||||
This generates a .so file in the LIBSVM main directory and you
|
||||
can run the interface in the current python directory.
|
||||
|
||||
For Windows, the shared library libsvm.dll is ready in the
|
||||
directory `..\windows' and you can directly run the interface in
|
||||
the current python directory. You can copy libsvm.dll to the
|
||||
system directory (e.g., `C:\WINDOWS\system32\') to make it
|
||||
system-widely available. To regenerate libsvm.dll, please
|
||||
follow the instruction of building Windows binaries in LIBSVM
|
||||
README.
|
||||
|
||||
- System-wide installation:
|
||||
|
||||
Type
|
||||
|
||||
> pip install -e .
|
||||
|
||||
or
|
||||
|
||||
> pip install --user -e .
|
||||
|
||||
The option --user would install the package in the home directory
|
||||
instead of the system directory, and thus does not require the
|
||||
root privilege.
|
||||
|
||||
Please note that you must keep the sources after the installation.
|
||||
|
||||
For Windows, to run the above command, Microsoft Visual C++ and
|
||||
other tools are needed.
|
||||
|
||||
In addition, DON'T use the following FAILED commands
|
||||
|
||||
> python setup.py install (failed to run at the python directory)
|
||||
> pip install .
|
||||
|
||||
Quick Start
|
||||
===========
|
||||
|
||||
"Quick Start with Scipy" is in the next section.
|
||||
|
||||
There are two levels of usage. The high-level one uses utility
|
||||
functions in svmutil.py and commonutil.py (shared with LIBLINEAR and
|
||||
imported by svmutil.py). The usage is the same as the LIBSVM MATLAB
|
||||
interface.
|
||||
|
||||
>>> from libsvm.svmutil import *
|
||||
# Read data in LIBSVM format
|
||||
>>> y, x = svm_read_problem('../heart_scale')
|
||||
>>> m = svm_train(y[:200], x[:200], '-c 4')
|
||||
>>> p_label, p_acc, p_val = svm_predict(y[200:], x[200:], m)
|
||||
|
||||
# Construct problem in python format
|
||||
# Dense data
|
||||
>>> y, x = [1,-1], [[1,0,1], [-1,0,-1]]
|
||||
# Sparse data
|
||||
>>> y, x = [1,-1], [{1:1, 3:1}, {1:-1,3:-1}]
|
||||
>>> prob = svm_problem(y, x)
|
||||
>>> param = svm_parameter('-t 0 -c 4 -b 1')
|
||||
>>> m = svm_train(prob, param)
|
||||
|
||||
# Precomputed kernel data (-t 4)
|
||||
# Dense data
|
||||
>>> y, x = [1,-1], [[1, 2, -2], [2, -2, 2]]
|
||||
# Sparse data
|
||||
>>> y, x = [1,-1], [{0:1, 1:2, 2:-2}, {0:2, 1:-2, 2:2}]
|
||||
# isKernel=True must be set for precomputed kernel
|
||||
>>> prob = svm_problem(y, x, isKernel=True)
|
||||
>>> param = svm_parameter('-t 4 -c 4 -b 1')
|
||||
>>> m = svm_train(prob, param)
|
||||
# For the format of precomputed kernel, please read LIBSVM README.
|
||||
|
||||
|
||||
# Other utility functions
|
||||
>>> svm_save_model('heart_scale.model', m)
|
||||
>>> m = svm_load_model('heart_scale.model')
|
||||
>>> p_label, p_acc, p_val = svm_predict(y, x, m, '-b 1')
|
||||
>>> ACC, MSE, SCC = evaluations(y, p_label)
|
||||
|
||||
# Getting online help
|
||||
>>> help(svm_train)
|
||||
|
||||
The low-level use directly calls C interfaces imported by svm.py. Note that
|
||||
all arguments and return values are in ctypes format. You need to handle them
|
||||
carefully.
|
||||
|
||||
>>> from libsvm.svm import *
|
||||
>>> prob = svm_problem([1,-1], [{1:1, 3:1}, {1:-1,3:-1}])
|
||||
>>> param = svm_parameter('-c 4')
|
||||
>>> m = libsvm.svm_train(prob, param) # m is a ctype pointer to an svm_model
|
||||
# Convert a Python-format instance to svm_nodearray, a ctypes structure
|
||||
>>> x0, max_idx = gen_svm_nodearray({1:1, 3:1})
|
||||
>>> label = libsvm.svm_predict(m, x0)
|
||||
|
||||
Quick Start with Scipy
|
||||
======================
|
||||
|
||||
Make sure you have Scipy installed to proceed in this section.
|
||||
If numba (http://numba.pydata.org) is installed, some operations will be much faster.
|
||||
|
||||
There are two levels of usage. The high-level one uses utility functions
|
||||
in svmutil.py and the usage is the same as the LIBSVM MATLAB interface.
|
||||
|
||||
>>> import numpy as np
|
||||
>>> import scipy
|
||||
>>> from libsvm.svmutil import *
|
||||
# Read data in LIBSVM format
|
||||
>>> y, x = svm_read_problem('../heart_scale', return_scipy = True) # y: ndarray, x: csr_matrix
|
||||
>>> m = svm_train(y[:200], x[:200, :], '-c 4')
|
||||
>>> p_label, p_acc, p_val = svm_predict(y[200:], x[200:, :], m)
|
||||
|
||||
# Construct problem in Scipy format
|
||||
# Dense data: numpy ndarray
|
||||
>>> y, x = np.asarray([1,-1]), np.asarray([[1,0,1], [-1,0,-1]])
|
||||
# Sparse data: scipy csr_matrix((data, (row_ind, col_ind))
|
||||
>>> y, x = np.asarray([1,-1]), scipy.sparse.csr_matrix(([1, 1, -1, -1], ([0, 0, 1, 1], [0, 2, 0, 2])))
|
||||
>>> prob = svm_problem(y, x)
|
||||
>>> param = svm_parameter('-t 0 -c 4 -b 1')
|
||||
>>> m = svm_train(prob, param)
|
||||
|
||||
# Precomputed kernel data (-t 4)
|
||||
# Dense data: numpy ndarray
|
||||
>>> y, x = np.asarray([1,-1]), np.asarray([[1,2,-2], [2,-2,2]])
|
||||
# Sparse data: scipy csr_matrix((data, (row_ind, col_ind))
|
||||
>>> y, x = np.asarray([1,-1]), scipy.sparse.csr_matrix(([1, 2, -2, 2, -2, 2], ([0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2])))
|
||||
# isKernel=True must be set for precomputed kernel
|
||||
>>> prob = svm_problem(y, x, isKernel=True)
|
||||
>>> param = svm_parameter('-t 4 -c 4 -b 1')
|
||||
>>> m = svm_train(prob, param)
|
||||
# For the format of precomputed kernel, please read LIBSVM README.
|
||||
|
||||
# Apply data scaling in Scipy format
|
||||
>>> y, x = svm_read_problem('../heart_scale', return_scipy=True)
|
||||
>>> scale_param = csr_find_scale_param(x, lower=0)
|
||||
>>> scaled_x = csr_scale(x, scale_param)
|
||||
|
||||
# Other utility functions
|
||||
>>> svm_save_model('heart_scale.model', m)
|
||||
>>> m = svm_load_model('heart_scale.model')
|
||||
>>> p_label, p_acc, p_val = svm_predict(y, x, m, '-b 1')
|
||||
>>> ACC, MSE, SCC = evaluations(y, p_label)
|
||||
|
||||
# Getting online help
|
||||
>>> help(svm_train)
|
||||
|
||||
The low-level use directly calls C interfaces imported by svm.py. Note that
|
||||
all arguments and return values are in ctypes format. You need to handle them
|
||||
carefully.
|
||||
|
||||
>>> from libsvm.svm import *
|
||||
>>> prob = svm_problem(np.asarray([1,-1]), scipy.sparse.csr_matrix(([1, 1, -1, -1], ([0, 0, 1, 1], [0, 2, 0, 2]))))
|
||||
>>> param = svm_parameter('-c 4')
|
||||
>>> m = libsvm.svm_train(prob, param) # m is a ctype pointer to an svm_model
|
||||
# Convert a tuple of ndarray (index, data) to feature_nodearray, a ctypes structure
|
||||
# Note that index starts from 0, though the following example will be changed to 1:1, 3:1 internally
|
||||
>>> x0, max_idx = gen_svm_nodearray((np.asarray([0,2]), np.asarray([1,1])))
|
||||
>>> label = libsvm.svm_predict(m, x0)
|
||||
|
||||
Design Description
|
||||
==================
|
||||
|
||||
There are two files svm.py and svmutil.py, which respectively correspond to
|
||||
low-level and high-level use of the interface.
|
||||
|
||||
In svm.py, we adopt the Python built-in library "ctypes," so that
|
||||
Python can directly access C structures and interface functions defined
|
||||
in svm.h.
|
||||
|
||||
While advanced users can use structures/functions in svm.py, to
|
||||
avoid handling ctypes structures, in svmutil.py we provide some easy-to-use
|
||||
functions. The usage is similar to LIBSVM MATLAB interface.
|
||||
|
||||
Data Structures
|
||||
===============
|
||||
|
||||
Four data structures derived from svm.h are svm_node, svm_problem, svm_parameter,
|
||||
and svm_model. They all contain fields with the same names in svm.h. Access
|
||||
these fields carefully because you directly use a C structure instead of a
|
||||
Python object. For svm_model, accessing the field directly is not recommanded.
|
||||
Programmers should use the interface functions or methods of svm_model class
|
||||
in Python to get the values. The following description introduces additional
|
||||
fields and methods.
|
||||
|
||||
Before using the data structures, execute the following command to load the
|
||||
LIBSVM shared library:
|
||||
|
||||
>>> from libsvm.svm import *
|
||||
|
||||
- class svm_node:
|
||||
|
||||
Construct an svm_node.
|
||||
|
||||
>>> node = svm_node(idx, val)
|
||||
|
||||
idx: an integer indicates the feature index.
|
||||
|
||||
val: a float indicates the feature value.
|
||||
|
||||
Show the index and the value of a node.
|
||||
|
||||
>>> print(node)
|
||||
|
||||
- Function: gen_svm_nodearray(xi [,feature_max=None [,isKernel=False]])
|
||||
|
||||
Generate a feature vector from a Python list/tuple/dictionary, numpy ndarray or tuple of (index, data):
|
||||
|
||||
>>> xi_ctype, max_idx = gen_svm_nodearray({1:1, 3:1, 5:-2})
|
||||
|
||||
xi_ctype: the returned svm_nodearray (a ctypes structure)
|
||||
|
||||
max_idx: the maximal feature index of xi
|
||||
|
||||
feature_max: if feature_max is assigned, features with indices larger than
|
||||
feature_max are removed.
|
||||
|
||||
isKernel: if isKernel == True, the list index starts from 0 for precomputed
|
||||
kernel. Otherwise, the list index starts from 1. The default
|
||||
value is False.
|
||||
|
||||
- class svm_problem:
|
||||
|
||||
Construct an svm_problem instance
|
||||
|
||||
>>> prob = svm_problem(y, x)
|
||||
|
||||
y: a Python list/tuple/ndarray of l labels (type must be int/double).
|
||||
|
||||
x: 1. a list/tuple of l training instances. Feature vector of
|
||||
each training instance is a list/tuple or dictionary.
|
||||
|
||||
2. an l * n numpy ndarray or scipy spmatrix (n: number of features).
|
||||
|
||||
Note that if your x contains sparse data (i.e., dictionary), the internal
|
||||
ctypes data format is still sparse.
|
||||
|
||||
For pre-computed kernel, the isKernel flag should be set to True:
|
||||
|
||||
>>> prob = svm_problem(y, x, isKernel=True)
|
||||
|
||||
Please read LIBSVM README for more details of pre-computed kernel.
|
||||
|
||||
- class svm_parameter:
|
||||
|
||||
Construct an svm_parameter instance
|
||||
|
||||
>>> param = svm_parameter('training_options')
|
||||
|
||||
If 'training_options' is empty, LIBSVM default values are applied.
|
||||
|
||||
Set param to LIBSVM default values.
|
||||
|
||||
>>> param.set_to_default_values()
|
||||
|
||||
Parse a string of options.
|
||||
|
||||
>>> param.parse_options('training_options')
|
||||
|
||||
Show values of parameters.
|
||||
|
||||
>>> print(param)
|
||||
|
||||
- class svm_model:
|
||||
|
||||
There are two ways to obtain an instance of svm_model:
|
||||
|
||||
>>> model = svm_train(y, x)
|
||||
>>> model = svm_load_model('model_file_name')
|
||||
|
||||
Note that the returned structure of interface functions
|
||||
libsvm.svm_train and libsvm.svm_load_model is a ctypes pointer of
|
||||
svm_model, which is different from the svm_model object returned
|
||||
by svm_train and svm_load_model in svmutil.py. We provide a
|
||||
function toPyModel for the conversion:
|
||||
|
||||
>>> model_ptr = libsvm.svm_train(prob, param)
|
||||
>>> model = toPyModel(model_ptr)
|
||||
|
||||
If you obtain a model in a way other than the above approaches,
|
||||
handle it carefully to avoid memory leak or segmentation fault.
|
||||
|
||||
Some interface functions to access LIBSVM models are wrapped as
|
||||
members of the class svm_model:
|
||||
|
||||
>>> svm_type = model.get_svm_type()
|
||||
>>> nr_class = model.get_nr_class()
|
||||
>>> svr_probability = model.get_svr_probability()
|
||||
>>> class_labels = model.get_labels()
|
||||
>>> sv_indices = model.get_sv_indices()
|
||||
>>> nr_sv = model.get_nr_sv()
|
||||
>>> is_prob_model = model.is_probability_model()
|
||||
>>> support_vector_coefficients = model.get_sv_coef()
|
||||
>>> support_vectors = model.get_SV()
|
||||
|
||||
Utility Functions
|
||||
=================
|
||||
|
||||
To use utility functions, type
|
||||
|
||||
>>> from libsvm.svmutil import *
|
||||
|
||||
The above command loads
|
||||
svm_train() : train an SVM model
|
||||
svm_predict() : predict testing data
|
||||
svm_read_problem() : read the data from a LIBSVM-format file or object.
|
||||
svm_load_model() : load a LIBSVM model.
|
||||
svm_save_model() : save model to a file.
|
||||
evaluations() : evaluate prediction results.
|
||||
csr_find_scale_param() : find scaling parameter for data in csr format.
|
||||
csr_scale() : apply data scaling to data in csr format.
|
||||
|
||||
- Function: svm_train
|
||||
|
||||
There are three ways to call svm_train()
|
||||
|
||||
>>> model = svm_train(y, x [, 'training_options'])
|
||||
>>> model = svm_train(prob [, 'training_options'])
|
||||
>>> model = svm_train(prob, param)
|
||||
|
||||
y: a list/tuple/ndarray of l training labels (type must be int/double).
|
||||
|
||||
x: 1. a list/tuple of l training instances. Feature vector of
|
||||
each training instance is a list/tuple or dictionary.
|
||||
|
||||
2. an l * n numpy ndarray or scipy spmatrix (n: number of features).
|
||||
|
||||
training_options: a string in the same form as that for LIBSVM command
|
||||
mode.
|
||||
|
||||
prob: an svm_problem instance generated by calling
|
||||
svm_problem(y, x).
|
||||
For pre-computed kernel, you should use
|
||||
svm_problem(y, x, isKernel=True)
|
||||
|
||||
param: an svm_parameter instance generated by calling
|
||||
svm_parameter('training_options')
|
||||
|
||||
model: the returned svm_model instance. See svm.h for details of this
|
||||
structure. If '-v' is specified, cross validation is
|
||||
conducted and the returned model is just a scalar: cross-validation
|
||||
accuracy for classification and mean-squared error for regression.
|
||||
|
||||
To train the same data many times with different
|
||||
parameters, the second and the third ways should be faster..
|
||||
|
||||
Examples:
|
||||
|
||||
>>> y, x = svm_read_problem('../heart_scale')
|
||||
>>> prob = svm_problem(y, x)
|
||||
>>> param = svm_parameter('-s 3 -c 5 -h 0')
|
||||
>>> m = svm_train(y, x, '-c 5')
|
||||
>>> m = svm_train(prob, '-t 2 -c 5')
|
||||
>>> m = svm_train(prob, param)
|
||||
>>> CV_ACC = svm_train(y, x, '-v 3')
|
||||
|
||||
- Function: svm_predict
|
||||
|
||||
To predict testing data with a model, use
|
||||
|
||||
>>> p_labs, p_acc, p_vals = svm_predict(y, x, model [,'predicting_options'])
|
||||
|
||||
y: a list/tuple/ndarray of l true labels (type must be int/double).
|
||||
It is used for calculating the accuracy. Use [] if true labels are
|
||||
unavailable.
|
||||
|
||||
x: 1. a list/tuple of l training instances. Feature vector of
|
||||
each training instance is a list/tuple or dictionary.
|
||||
|
||||
2. an l * n numpy ndarray or scipy spmatrix (n: number of features).
|
||||
|
||||
predicting_options: a string of predicting options in the same format as
|
||||
that of LIBSVM.
|
||||
|
||||
model: an svm_model instance.
|
||||
|
||||
p_labels: a list of predicted labels
|
||||
|
||||
p_acc: a tuple including accuracy (for classification), mean
|
||||
squared error, and squared correlation coefficient (for
|
||||
regression).
|
||||
|
||||
p_vals: a list of decision values or probability estimates (if '-b 1'
|
||||
is specified). If k is the number of classes in training data,
|
||||
for decision values, each element includes results of predicting
|
||||
k(k-1)/2 binary-class SVMs. For classification, k = 1 is a
|
||||
special case. Decision value [+1] is returned for each testing
|
||||
instance, instead of an empty list.
|
||||
For probabilities, each element contains k values indicating
|
||||
the probability that the testing instance is in each class.
|
||||
For one-class SVM, the list has two elements indicating the
|
||||
probabilities of normal instance/outlier.
|
||||
Note that the order of classes is the same as the 'model.label'
|
||||
field in the model structure.
|
||||
|
||||
Example:
|
||||
|
||||
>>> m = svm_train(y, x, '-c 5')
|
||||
>>> p_labels, p_acc, p_vals = svm_predict(y, x, m)
|
||||
|
||||
- Functions: svm_read_problem/svm_load_model/svm_save_model
|
||||
|
||||
See the usage by examples:
|
||||
|
||||
>>> y, x = svm_read_problem('data.txt')
|
||||
>>> with open('data.txt') as f:
|
||||
>>> y, x = svm_read_problem(f)
|
||||
>>> m = svm_load_model('model_file')
|
||||
>>> svm_save_model('model_file', m)
|
||||
|
||||
- Function: evaluations
|
||||
|
||||
Calculate some evaluations using the true values (ty) and the predicted
|
||||
values (pv):
|
||||
|
||||
>>> (ACC, MSE, SCC) = evaluations(ty, pv, useScipy)
|
||||
|
||||
ty: a list/tuple/ndarray of true values.
|
||||
|
||||
pv: a list/tuple/ndarray of predicted values.
|
||||
|
||||
useScipy: convert ty, pv to ndarray, and use scipy functions to do the evaluation
|
||||
|
||||
ACC: accuracy.
|
||||
|
||||
MSE: mean squared error.
|
||||
|
||||
SCC: squared correlation coefficient.
|
||||
|
||||
- Function: csr_find_scale_parameter/csr_scale
|
||||
|
||||
Scale data in csr format.
|
||||
|
||||
>>> param = csr_find_scale_param(x [, lower=l, upper=u])
|
||||
>>> x = csr_scale(x, param)
|
||||
|
||||
x: a csr_matrix of data.
|
||||
|
||||
l: x scaling lower limit; default -1.
|
||||
|
||||
u: x scaling upper limit; default 1.
|
||||
|
||||
The scaling process is: x * diag(coef) + ones(l, 1) * offset'
|
||||
|
||||
param: a dictionary of scaling parameters, where param['coef'] = coef and param['offset'] = offset.
|
||||
|
||||
coef: a scipy array of scaling coefficients.
|
||||
|
||||
offset: a scipy array of scaling offsets.
|
||||
|
||||
Additional Information
|
||||
======================
|
||||
|
||||
This interface was originally written by Hsiang-Fu Yu from Department of Computer
|
||||
Science, National Taiwan University. If you find this tool useful, please
|
||||
cite LIBSVM as follows
|
||||
|
||||
Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support
|
||||
vector machines. ACM Transactions on Intelligent Systems and
|
||||
Technology, 2:27:1--27:27, 2011. Software available at
|
||||
http://www.csie.ntu.edu.tw/~cjlin/libsvm
|
||||
|
||||
For any question, please contact Chih-Jen Lin <cjlin@csie.ntu.edu.tw>,
|
||||
or check the FAQ page:
|
||||
|
||||
http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html
|
0
libsvm-3.36/python/libsvm/__init__.py
Normal file
0
libsvm-3.36/python/libsvm/__init__.py
Normal file
189
libsvm-3.36/python/libsvm/commonutil.py
Normal file
189
libsvm-3.36/python/libsvm/commonutil.py
Normal file
@@ -0,0 +1,189 @@
|
||||
from __future__ import print_function
|
||||
from array import array
|
||||
import sys
|
||||
|
||||
try:
|
||||
import numpy as np
|
||||
import scipy
|
||||
from scipy import sparse
|
||||
except:
|
||||
scipy = None
|
||||
|
||||
|
||||
__all__ = ['svm_read_problem', 'evaluations', 'csr_find_scale_param', 'csr_scale']
|
||||
|
||||
def svm_read_problem(data_source, return_scipy=False):
|
||||
"""
|
||||
svm_read_problem(data_source, return_scipy=False) -> [y, x], y: list, x: list of dictionary
|
||||
svm_read_problem(data_source, return_scipy=True) -> [y, x], y: ndarray, x: csr_matrix
|
||||
|
||||
Read LIBSVM-format data from data_source and return labels y
|
||||
and data instances x.
|
||||
"""
|
||||
if scipy != None and return_scipy:
|
||||
prob_y = array('d')
|
||||
prob_x = array('d')
|
||||
row_ptr = array('l', [0])
|
||||
col_idx = array('l')
|
||||
else:
|
||||
prob_y = []
|
||||
prob_x = []
|
||||
row_ptr = [0]
|
||||
col_idx = []
|
||||
indx_start = 1
|
||||
|
||||
if hasattr(data_source, "read"):
|
||||
file = data_source
|
||||
else:
|
||||
file = open(data_source)
|
||||
try:
|
||||
for line in file:
|
||||
line = line.split(None, 1)
|
||||
# In case an instance with all zero features
|
||||
if len(line) == 1: line += ['']
|
||||
label, features = line
|
||||
prob_y.append(float(label))
|
||||
if scipy != None and return_scipy:
|
||||
nz = 0
|
||||
for e in features.split():
|
||||
ind, val = e.split(":")
|
||||
if ind == '0':
|
||||
indx_start = 0
|
||||
val = float(val)
|
||||
if val != 0:
|
||||
col_idx.append(int(ind)-indx_start)
|
||||
prob_x.append(val)
|
||||
nz += 1
|
||||
row_ptr.append(row_ptr[-1]+nz)
|
||||
else:
|
||||
xi = {}
|
||||
for e in features.split():
|
||||
ind, val = e.split(":")
|
||||
xi[int(ind)] = float(val)
|
||||
prob_x += [xi]
|
||||
except Exception as err_msg:
|
||||
raise err_msg
|
||||
finally:
|
||||
if not hasattr(data_source, "read"):
|
||||
# close file only if it was created by us
|
||||
file.close()
|
||||
|
||||
if scipy != None and return_scipy:
|
||||
prob_y = np.frombuffer(prob_y, dtype='d')
|
||||
prob_x = np.frombuffer(prob_x, dtype='d')
|
||||
col_idx = np.frombuffer(col_idx, dtype='l')
|
||||
row_ptr = np.frombuffer(row_ptr, dtype='l')
|
||||
prob_x = sparse.csr_matrix((prob_x, col_idx, row_ptr))
|
||||
return (prob_y, prob_x)
|
||||
|
||||
def evaluations_scipy(ty, pv):
|
||||
"""
|
||||
evaluations_scipy(ty, pv) -> (ACC, MSE, SCC)
|
||||
ty, pv: ndarray
|
||||
|
||||
Calculate accuracy, mean squared error and squared correlation coefficient
|
||||
using the true values (ty) and predicted values (pv).
|
||||
"""
|
||||
if not (scipy != None and isinstance(ty, np.ndarray) and isinstance(pv, np.ndarray)):
|
||||
raise TypeError("type of ty and pv must be ndarray")
|
||||
if len(ty) != len(pv):
|
||||
raise ValueError("len(ty) must be equal to len(pv)")
|
||||
ACC = 100.0*(ty == pv).mean()
|
||||
MSE = ((ty - pv)**2).mean()
|
||||
l = len(ty)
|
||||
sumv = pv.sum()
|
||||
sumy = ty.sum()
|
||||
sumvy = (pv*ty).sum()
|
||||
sumvv = (pv*pv).sum()
|
||||
sumyy = (ty*ty).sum()
|
||||
with np.errstate(all = 'raise'):
|
||||
try:
|
||||
SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy))
|
||||
except:
|
||||
SCC = float('nan')
|
||||
return (float(ACC), float(MSE), float(SCC))
|
||||
|
||||
def evaluations(ty, pv, useScipy = True):
|
||||
"""
|
||||
evaluations(ty, pv, useScipy) -> (ACC, MSE, SCC)
|
||||
ty, pv: list, tuple or ndarray
|
||||
useScipy: convert ty, pv to ndarray, and use scipy functions for the evaluation
|
||||
|
||||
Calculate accuracy, mean squared error and squared correlation coefficient
|
||||
using the true values (ty) and predicted values (pv).
|
||||
"""
|
||||
if scipy != None and useScipy:
|
||||
return evaluations_scipy(np.asarray(ty), np.asarray(pv))
|
||||
if len(ty) != len(pv):
|
||||
raise ValueError("len(ty) must be equal to len(pv)")
|
||||
total_correct = total_error = 0
|
||||
sumv = sumy = sumvv = sumyy = sumvy = 0
|
||||
for v, y in zip(pv, ty):
|
||||
if y == v:
|
||||
total_correct += 1
|
||||
total_error += (v-y)*(v-y)
|
||||
sumv += v
|
||||
sumy += y
|
||||
sumvv += v*v
|
||||
sumyy += y*y
|
||||
sumvy += v*y
|
||||
l = len(ty)
|
||||
ACC = 100.0*total_correct/l
|
||||
MSE = total_error/l
|
||||
try:
|
||||
SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy))
|
||||
except:
|
||||
SCC = float('nan')
|
||||
return (float(ACC), float(MSE), float(SCC))
|
||||
|
||||
def csr_find_scale_param(x, lower=-1, upper=1):
|
||||
assert isinstance(x, sparse.csr_matrix)
|
||||
assert lower < upper
|
||||
l, n = x.shape
|
||||
feat_min = x.min(axis=0).toarray().flatten()
|
||||
feat_max = x.max(axis=0).toarray().flatten()
|
||||
coef = (feat_max - feat_min) / (upper - lower)
|
||||
coef[coef != 0] = 1.0 / coef[coef != 0]
|
||||
|
||||
# (x - ones(l,1) * feat_min') * diag(coef) + lower
|
||||
# = x * diag(coef) - ones(l, 1) * (feat_min' * diag(coef)) + lower
|
||||
# = x * diag(coef) + ones(l, 1) * (-feat_min' * diag(coef) + lower)
|
||||
# = x * diag(coef) + ones(l, 1) * offset'
|
||||
offset = -feat_min * coef + lower
|
||||
offset[coef == 0] = 0
|
||||
|
||||
if sum(offset != 0) * l > 3 * x.getnnz():
|
||||
print(
|
||||
"WARNING: The #nonzeros of the scaled data is at least 2 times larger than the original one.\n"
|
||||
"If feature values are non-negative and sparse, set lower=0 rather than the default lower=-1.",
|
||||
file=sys.stderr)
|
||||
|
||||
return {'coef':coef, 'offset':offset}
|
||||
|
||||
def csr_scale(x, scale_param):
|
||||
assert isinstance(x, sparse.csr_matrix)
|
||||
|
||||
offset = scale_param['offset']
|
||||
coef = scale_param['coef']
|
||||
assert len(coef) == len(offset)
|
||||
|
||||
l, n = x.shape
|
||||
|
||||
if not n == len(coef):
|
||||
print("WARNING: The dimension of scaling parameters and feature number do not match.", file=sys.stderr)
|
||||
coef = coef.resize(n) # zeros padded if n > len(coef)
|
||||
offset = offset.resize(n)
|
||||
|
||||
# scaled_x = x * diag(coef) + ones(l, 1) * offset'
|
||||
offset = sparse.csr_matrix(offset.reshape(1, n))
|
||||
offset = sparse.vstack([offset] * l, format='csr', dtype=x.dtype)
|
||||
scaled_x = x.dot(sparse.diags(coef, 0, shape=(n, n))) + offset
|
||||
|
||||
if scaled_x.getnnz() > x.getnnz():
|
||||
print(
|
||||
"WARNING: original #nonzeros %d\n" % x.getnnz() +
|
||||
" > new #nonzeros %d\n" % scaled_x.getnnz() +
|
||||
"If feature values are non-negative and sparse, get scale_param by setting lower=0 rather than the default lower=-1.",
|
||||
file=sys.stderr)
|
||||
|
||||
return scaled_x
|
465
libsvm-3.36/python/libsvm/svm.py
Normal file
465
libsvm-3.36/python/libsvm/svm.py
Normal file
@@ -0,0 +1,465 @@
|
||||
from ctypes import *
|
||||
from ctypes.util import find_library
|
||||
from os import path
|
||||
from glob import glob
|
||||
from enum import IntEnum
|
||||
import sys
|
||||
|
||||
try:
|
||||
import numpy as np
|
||||
import scipy
|
||||
from scipy import sparse
|
||||
except:
|
||||
scipy = None
|
||||
|
||||
|
||||
if sys.version_info[0] < 3:
|
||||
range = xrange
|
||||
from itertools import izip as zip
|
||||
|
||||
__all__ = ['libsvm', 'svm_problem', 'svm_parameter',
|
||||
'toPyModel', 'gen_svm_nodearray', 'print_null', 'svm_node', 'svm_forms',
|
||||
'PRINT_STRING_FUN', 'kernel_names', 'c_double', 'svm_model']
|
||||
|
||||
try:
|
||||
dirname = path.dirname(path.abspath(__file__))
|
||||
dynamic_lib_name = 'clib.cp*'
|
||||
path_to_so = glob(path.join(dirname, dynamic_lib_name))[0]
|
||||
libsvm = CDLL(path_to_so)
|
||||
except:
|
||||
try:
|
||||
if sys.platform == 'win32':
|
||||
libsvm = CDLL(path.join(dirname, r'..\..\windows\libsvm.dll'))
|
||||
else:
|
||||
libsvm = CDLL(path.join(dirname, '../../libsvm.so.4'))
|
||||
except:
|
||||
# For unix the prefix 'lib' is not considered.
|
||||
if find_library('svm'):
|
||||
libsvm = CDLL(find_library('svm'))
|
||||
elif find_library('libsvm'):
|
||||
libsvm = CDLL(find_library('libsvm'))
|
||||
else:
|
||||
raise Exception('LIBSVM library not found.')
|
||||
|
||||
class svm_forms(IntEnum):
|
||||
C_SVC = 0
|
||||
NU_SVC = 1
|
||||
ONE_CLASS = 2
|
||||
EPSILON_SVR = 3
|
||||
NU_SVR = 4
|
||||
|
||||
class kernel_names(IntEnum):
|
||||
LINEAR = 0
|
||||
POLY = 1
|
||||
RBF = 2
|
||||
SIGMOID = 3
|
||||
PRECOMPUTED = 4
|
||||
|
||||
PRINT_STRING_FUN = CFUNCTYPE(None, c_char_p)
|
||||
def print_null(s):
|
||||
return
|
||||
|
||||
# In multi-threading, all threads share the same memory space of
|
||||
# the dynamic library (libsvm). Thus, we use a module-level
|
||||
# variable to keep a reference to ctypes print_null, preventing
|
||||
# python from garbage collecting it in thread B while thread A
|
||||
# still needs it. Check the usage of svm_set_print_string_function()
|
||||
# in LIBSVM README for details.
|
||||
ctypes_print_null = PRINT_STRING_FUN(print_null)
|
||||
|
||||
def genFields(names, types):
|
||||
return list(zip(names, types))
|
||||
|
||||
def fillprototype(f, restype, argtypes):
|
||||
f.restype = restype
|
||||
f.argtypes = argtypes
|
||||
|
||||
class svm_node(Structure):
|
||||
_names = ["index", "value"]
|
||||
_types = [c_int, c_double]
|
||||
_fields_ = genFields(_names, _types)
|
||||
|
||||
def __init__(self, index=-1, value=0):
|
||||
self.index, self.value = index, value
|
||||
|
||||
def __str__(self):
|
||||
return '%d:%g' % (self.index, self.value)
|
||||
|
||||
def gen_svm_nodearray(xi, feature_max=None, isKernel=False):
|
||||
if feature_max:
|
||||
assert(isinstance(feature_max, int))
|
||||
|
||||
xi_shift = 0 # ensure correct indices of xi
|
||||
if scipy and isinstance(xi, tuple) and len(xi) == 2\
|
||||
and isinstance(xi[0], np.ndarray) and isinstance(xi[1], np.ndarray): # for a sparse vector
|
||||
if not isKernel:
|
||||
index_range = xi[0] + 1 # index starts from 1
|
||||
else:
|
||||
index_range = xi[0] # index starts from 0 for precomputed kernel
|
||||
if feature_max:
|
||||
index_range = index_range[np.where(index_range <= feature_max)]
|
||||
elif scipy and isinstance(xi, np.ndarray):
|
||||
if not isKernel:
|
||||
xi_shift = 1
|
||||
index_range = xi.nonzero()[0] + 1 # index starts from 1
|
||||
else:
|
||||
index_range = np.arange(0, len(xi)) # index starts from 0 for precomputed kernel
|
||||
if feature_max:
|
||||
index_range = index_range[np.where(index_range <= feature_max)]
|
||||
elif isinstance(xi, (dict, list, tuple)):
|
||||
if isinstance(xi, dict):
|
||||
index_range = sorted(xi.keys())
|
||||
elif isinstance(xi, (list, tuple)):
|
||||
if not isKernel:
|
||||
xi_shift = 1
|
||||
index_range = range(1, len(xi) + 1) # index starts from 1
|
||||
else:
|
||||
index_range = range(0, len(xi)) # index starts from 0 for precomputed kernel
|
||||
|
||||
if feature_max:
|
||||
index_range = list(filter(lambda j: j <= feature_max, index_range))
|
||||
if not isKernel:
|
||||
index_range = list(filter(lambda j:xi[j-xi_shift] != 0, index_range))
|
||||
else:
|
||||
raise TypeError('xi should be a dictionary, list, tuple, 1-d numpy array, or tuple of (index, data)')
|
||||
|
||||
ret = (svm_node*(len(index_range)+1))()
|
||||
ret[-1].index = -1
|
||||
|
||||
if scipy and isinstance(xi, tuple) and len(xi) == 2\
|
||||
and isinstance(xi[0], np.ndarray) and isinstance(xi[1], np.ndarray): # for a sparse vector
|
||||
# since xi=(indices, values), we must sort them simultaneously.
|
||||
for idx, arg in enumerate(np.argsort(index_range)):
|
||||
ret[idx].index = index_range[arg]
|
||||
ret[idx].value = (xi[1])[arg]
|
||||
else:
|
||||
for idx, j in enumerate(index_range):
|
||||
ret[idx].index = j
|
||||
ret[idx].value = xi[j - xi_shift]
|
||||
|
||||
max_idx = 0
|
||||
if len(index_range) > 0:
|
||||
max_idx = index_range[-1]
|
||||
return ret, max_idx
|
||||
|
||||
try:
|
||||
from numba import jit
|
||||
jit_enabled = True
|
||||
except:
|
||||
# We need to support two cases: when jit is called with no arguments, and when jit is called with
|
||||
# a keyword argument.
|
||||
def jit(func=None, *args, **kwargs):
|
||||
if func is None:
|
||||
# This handles the case where jit is used with parentheses: @jit(nopython=True)
|
||||
return lambda x: x
|
||||
else:
|
||||
# This handles the case where jit is used without parentheses: @jit
|
||||
return func
|
||||
jit_enabled = False
|
||||
|
||||
@jit(nopython=True)
|
||||
def csr_to_problem_jit(l, x_val, x_ind, x_rowptr, prob_val, prob_ind, prob_rowptr, indx_start):
|
||||
for i in range(l):
|
||||
b1,e1 = x_rowptr[i], x_rowptr[i+1]
|
||||
b2,e2 = prob_rowptr[i], prob_rowptr[i+1]-1
|
||||
for j in range(b1,e1):
|
||||
prob_ind[j-b1+b2] = x_ind[j]+indx_start
|
||||
prob_val[j-b1+b2] = x_val[j]
|
||||
def csr_to_problem_nojit(l, x_val, x_ind, x_rowptr, prob_val, prob_ind, prob_rowptr, indx_start):
|
||||
for i in range(l):
|
||||
x_slice = slice(x_rowptr[i], x_rowptr[i+1])
|
||||
prob_slice = slice(prob_rowptr[i], prob_rowptr[i+1]-1)
|
||||
prob_ind[prob_slice] = x_ind[x_slice]+indx_start
|
||||
prob_val[prob_slice] = x_val[x_slice]
|
||||
|
||||
def csr_to_problem(x, prob, isKernel):
|
||||
if not x.has_sorted_indices:
|
||||
x.sort_indices()
|
||||
|
||||
# Extra space for termination node and (possibly) bias term
|
||||
x_space = prob.x_space = np.empty((x.nnz+x.shape[0]), dtype=svm_node)
|
||||
# rowptr has to be a 64bit integer because it will later be used for pointer arithmetic,
|
||||
# which overflows when the added pointer points to an address that is numerically high.
|
||||
prob.rowptr = x.indptr.astype(np.int64, copy=True)
|
||||
prob.rowptr[1:] += np.arange(1,x.shape[0]+1)
|
||||
prob_ind = x_space["index"]
|
||||
prob_val = x_space["value"]
|
||||
prob_ind[:] = -1
|
||||
if not isKernel:
|
||||
indx_start = 1 # index starts from 1
|
||||
else:
|
||||
indx_start = 0 # index starts from 0 for precomputed kernel
|
||||
if jit_enabled:
|
||||
csr_to_problem_jit(x.shape[0], x.data, x.indices, x.indptr, prob_val, prob_ind, prob.rowptr, indx_start)
|
||||
else:
|
||||
csr_to_problem_nojit(x.shape[0], x.data, x.indices, x.indptr, prob_val, prob_ind, prob.rowptr, indx_start)
|
||||
|
||||
class svm_problem(Structure):
|
||||
_names = ["l", "y", "x"]
|
||||
_types = [c_int, POINTER(c_double), POINTER(POINTER(svm_node))]
|
||||
_fields_ = genFields(_names, _types)
|
||||
|
||||
def __init__(self, y, x, isKernel=False):
|
||||
if (not isinstance(y, (list, tuple))) and (not (scipy and isinstance(y, np.ndarray))):
|
||||
raise TypeError("type of y: {0} is not supported!".format(type(y)))
|
||||
|
||||
if isinstance(x, (list, tuple)):
|
||||
if len(y) != len(x):
|
||||
raise ValueError("len(y) != len(x)")
|
||||
elif scipy != None and isinstance(x, (np.ndarray, sparse.spmatrix)):
|
||||
if len(y) != x.shape[0]:
|
||||
raise ValueError("len(y) != len(x)")
|
||||
if isinstance(x, np.ndarray):
|
||||
x = np.ascontiguousarray(x) # enforce row-major
|
||||
if isinstance(x, sparse.spmatrix):
|
||||
x = x.tocsr()
|
||||
pass
|
||||
else:
|
||||
raise TypeError("type of x: {0} is not supported!".format(type(x)))
|
||||
self.l = l = len(y)
|
||||
|
||||
max_idx = 0
|
||||
x_space = self.x_space = []
|
||||
if scipy != None and isinstance(x, sparse.csr_matrix):
|
||||
csr_to_problem(x, self, isKernel)
|
||||
max_idx = x.shape[1]
|
||||
else:
|
||||
for i, xi in enumerate(x):
|
||||
tmp_xi, tmp_idx = gen_svm_nodearray(xi,isKernel=isKernel)
|
||||
x_space += [tmp_xi]
|
||||
max_idx = max(max_idx, tmp_idx)
|
||||
self.n = max_idx
|
||||
|
||||
self.y = (c_double * l)()
|
||||
if scipy != None and isinstance(y, np.ndarray):
|
||||
np.ctypeslib.as_array(self.y, (self.l,))[:] = y
|
||||
else:
|
||||
for i, yi in enumerate(y): self.y[i] = yi
|
||||
|
||||
self.x = (POINTER(svm_node) * l)()
|
||||
if scipy != None and isinstance(x, sparse.csr_matrix):
|
||||
base = addressof(self.x_space.ctypes.data_as(POINTER(svm_node))[0])
|
||||
x_ptr = cast(self.x, POINTER(c_uint64))
|
||||
x_ptr = np.ctypeslib.as_array(x_ptr,(self.l,))
|
||||
x_ptr[:] = self.rowptr[:-1]*sizeof(svm_node)+base
|
||||
else:
|
||||
for i, xi in enumerate(self.x_space): self.x[i] = xi
|
||||
|
||||
class svm_parameter(Structure):
|
||||
_names = ["svm_type", "kernel_type", "degree", "gamma", "coef0",
|
||||
"cache_size", "eps", "C", "nr_weight", "weight_label", "weight",
|
||||
"nu", "p", "shrinking", "probability"]
|
||||
_types = [c_int, c_int, c_int, c_double, c_double,
|
||||
c_double, c_double, c_double, c_int, POINTER(c_int), POINTER(c_double),
|
||||
c_double, c_double, c_int, c_int]
|
||||
_fields_ = genFields(_names, _types)
|
||||
|
||||
def __init__(self, options = None):
|
||||
if options == None:
|
||||
options = ''
|
||||
self.parse_options(options)
|
||||
|
||||
def __str__(self):
|
||||
s = ''
|
||||
attrs = svm_parameter._names + list(self.__dict__.keys())
|
||||
values = map(lambda attr: getattr(self, attr), attrs)
|
||||
for attr, val in zip(attrs, values):
|
||||
s += (' %s: %s\n' % (attr, val))
|
||||
s = s.strip()
|
||||
|
||||
return s
|
||||
|
||||
def set_to_default_values(self):
|
||||
self.svm_type = svm_forms.C_SVC;
|
||||
self.kernel_type = kernel_names.RBF
|
||||
self.degree = 3
|
||||
self.gamma = 0
|
||||
self.coef0 = 0
|
||||
self.nu = 0.5
|
||||
self.cache_size = 100
|
||||
self.C = 1
|
||||
self.eps = 0.001
|
||||
self.p = 0.1
|
||||
self.shrinking = 1
|
||||
self.probability = 0
|
||||
self.nr_weight = 0
|
||||
self.weight_label = None
|
||||
self.weight = None
|
||||
self.cross_validation = False
|
||||
self.nr_fold = 0
|
||||
self.print_func = cast(None, PRINT_STRING_FUN)
|
||||
|
||||
def parse_options(self, options):
|
||||
if isinstance(options, list):
|
||||
argv = options
|
||||
elif isinstance(options, str):
|
||||
argv = options.split()
|
||||
else:
|
||||
raise TypeError("arg 1 should be a list or a str.")
|
||||
self.set_to_default_values()
|
||||
self.print_func = cast(None, PRINT_STRING_FUN)
|
||||
weight_label = []
|
||||
weight = []
|
||||
|
||||
i = 0
|
||||
while i < len(argv):
|
||||
if argv[i] == "-s":
|
||||
i = i + 1
|
||||
self.svm_type = svm_forms(int(argv[i]))
|
||||
elif argv[i] == "-t":
|
||||
i = i + 1
|
||||
self.kernel_type = kernel_names(int(argv[i]))
|
||||
elif argv[i] == "-d":
|
||||
i = i + 1
|
||||
self.degree = int(argv[i])
|
||||
elif argv[i] == "-g":
|
||||
i = i + 1
|
||||
self.gamma = float(argv[i])
|
||||
elif argv[i] == "-r":
|
||||
i = i + 1
|
||||
self.coef0 = float(argv[i])
|
||||
elif argv[i] == "-n":
|
||||
i = i + 1
|
||||
self.nu = float(argv[i])
|
||||
elif argv[i] == "-m":
|
||||
i = i + 1
|
||||
self.cache_size = float(argv[i])
|
||||
elif argv[i] == "-c":
|
||||
i = i + 1
|
||||
self.C = float(argv[i])
|
||||
elif argv[i] == "-e":
|
||||
i = i + 1
|
||||
self.eps = float(argv[i])
|
||||
elif argv[i] == "-p":
|
||||
i = i + 1
|
||||
self.p = float(argv[i])
|
||||
elif argv[i] == "-h":
|
||||
i = i + 1
|
||||
self.shrinking = int(argv[i])
|
||||
elif argv[i] == "-b":
|
||||
i = i + 1
|
||||
self.probability = int(argv[i])
|
||||
elif argv[i] == "-q":
|
||||
self.print_func = ctypes_print_null
|
||||
elif argv[i] == "-v":
|
||||
i = i + 1
|
||||
self.cross_validation = 1
|
||||
self.nr_fold = int(argv[i])
|
||||
if self.nr_fold < 2:
|
||||
raise ValueError("n-fold cross validation: n must >= 2")
|
||||
elif argv[i].startswith("-w"):
|
||||
i = i + 1
|
||||
self.nr_weight += 1
|
||||
weight_label += [int(argv[i-1][2:])]
|
||||
weight += [float(argv[i])]
|
||||
else:
|
||||
raise ValueError("Wrong options")
|
||||
i += 1
|
||||
|
||||
libsvm.svm_set_print_string_function(self.print_func)
|
||||
self.weight_label = (c_int*self.nr_weight)()
|
||||
self.weight = (c_double*self.nr_weight)()
|
||||
for i in range(self.nr_weight):
|
||||
self.weight[i] = weight[i]
|
||||
self.weight_label[i] = weight_label[i]
|
||||
|
||||
class svm_model(Structure):
|
||||
_names = ['param', 'nr_class', 'l', 'SV', 'sv_coef', 'rho',
|
||||
'probA', 'probB', 'prob_density_marks', 'sv_indices',
|
||||
'label', 'nSV', 'free_sv']
|
||||
_types = [svm_parameter, c_int, c_int, POINTER(POINTER(svm_node)),
|
||||
POINTER(POINTER(c_double)), POINTER(c_double),
|
||||
POINTER(c_double), POINTER(c_double), POINTER(c_double),
|
||||
POINTER(c_int), POINTER(c_int), POINTER(c_int), c_int]
|
||||
_fields_ = genFields(_names, _types)
|
||||
|
||||
def __init__(self):
|
||||
self.__createfrom__ = 'python'
|
||||
|
||||
def __del__(self):
|
||||
# free memory created by C to avoid memory leak
|
||||
if hasattr(self, '__createfrom__') and self.__createfrom__ == 'C':
|
||||
libsvm.svm_free_and_destroy_model(pointer(pointer(self)))
|
||||
|
||||
def get_svm_type(self):
|
||||
return libsvm.svm_get_svm_type(self)
|
||||
|
||||
def get_nr_class(self):
|
||||
return libsvm.svm_get_nr_class(self)
|
||||
|
||||
def get_svr_probability(self):
|
||||
return libsvm.svm_get_svr_probability(self)
|
||||
|
||||
def get_labels(self):
|
||||
nr_class = self.get_nr_class()
|
||||
labels = (c_int * nr_class)()
|
||||
libsvm.svm_get_labels(self, labels)
|
||||
return labels[:nr_class]
|
||||
|
||||
def get_sv_indices(self):
|
||||
total_sv = self.get_nr_sv()
|
||||
sv_indices = (c_int * total_sv)()
|
||||
libsvm.svm_get_sv_indices(self, sv_indices)
|
||||
return sv_indices[:total_sv]
|
||||
|
||||
def get_nr_sv(self):
|
||||
return libsvm.svm_get_nr_sv(self)
|
||||
|
||||
def is_probability_model(self):
|
||||
return (libsvm.svm_check_probability_model(self) == 1)
|
||||
|
||||
def get_sv_coef(self):
|
||||
return [tuple(self.sv_coef[j][i] for j in range(self.nr_class - 1))
|
||||
for i in range(self.l)]
|
||||
|
||||
def get_SV(self):
|
||||
result = []
|
||||
for sparse_sv in self.SV[:self.l]:
|
||||
row = dict()
|
||||
|
||||
i = 0
|
||||
while True:
|
||||
if sparse_sv[i].index == -1:
|
||||
break
|
||||
row[sparse_sv[i].index] = sparse_sv[i].value
|
||||
i += 1
|
||||
|
||||
result.append(row)
|
||||
return result
|
||||
|
||||
def toPyModel(model_ptr):
|
||||
"""
|
||||
toPyModel(model_ptr) -> svm_model
|
||||
|
||||
Convert a ctypes POINTER(svm_model) to a Python svm_model
|
||||
"""
|
||||
if bool(model_ptr) == False:
|
||||
raise ValueError("Null pointer")
|
||||
m = model_ptr.contents
|
||||
m.__createfrom__ = 'C'
|
||||
return m
|
||||
|
||||
fillprototype(libsvm.svm_train, POINTER(svm_model), [POINTER(svm_problem), POINTER(svm_parameter)])
|
||||
fillprototype(libsvm.svm_cross_validation, None, [POINTER(svm_problem), POINTER(svm_parameter), c_int, POINTER(c_double)])
|
||||
|
||||
fillprototype(libsvm.svm_save_model, c_int, [c_char_p, POINTER(svm_model)])
|
||||
fillprototype(libsvm.svm_load_model, POINTER(svm_model), [c_char_p])
|
||||
|
||||
fillprototype(libsvm.svm_get_svm_type, c_int, [POINTER(svm_model)])
|
||||
fillprototype(libsvm.svm_get_nr_class, c_int, [POINTER(svm_model)])
|
||||
fillprototype(libsvm.svm_get_labels, None, [POINTER(svm_model), POINTER(c_int)])
|
||||
fillprototype(libsvm.svm_get_sv_indices, None, [POINTER(svm_model), POINTER(c_int)])
|
||||
fillprototype(libsvm.svm_get_nr_sv, c_int, [POINTER(svm_model)])
|
||||
fillprototype(libsvm.svm_get_svr_probability, c_double, [POINTER(svm_model)])
|
||||
|
||||
fillprototype(libsvm.svm_predict_values, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)])
|
||||
fillprototype(libsvm.svm_predict, c_double, [POINTER(svm_model), POINTER(svm_node)])
|
||||
fillprototype(libsvm.svm_predict_probability, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)])
|
||||
|
||||
fillprototype(libsvm.svm_free_model_content, None, [POINTER(svm_model)])
|
||||
fillprototype(libsvm.svm_free_and_destroy_model, None, [POINTER(POINTER(svm_model))])
|
||||
fillprototype(libsvm.svm_destroy_param, None, [POINTER(svm_parameter)])
|
||||
|
||||
fillprototype(libsvm.svm_check_parameter, c_char_p, [POINTER(svm_problem), POINTER(svm_parameter)])
|
||||
fillprototype(libsvm.svm_check_probability_model, c_int, [POINTER(svm_model)])
|
||||
fillprototype(libsvm.svm_set_print_string_function, None, [PRINT_STRING_FUN])
|
263
libsvm-3.36/python/libsvm/svmutil.py
Normal file
263
libsvm-3.36/python/libsvm/svmutil.py
Normal file
@@ -0,0 +1,263 @@
|
||||
import os, sys
|
||||
from .svm import *
|
||||
from .svm import __all__ as svm_all
|
||||
from .commonutil import *
|
||||
from .commonutil import __all__ as common_all
|
||||
|
||||
try:
|
||||
import numpy as np
|
||||
import scipy
|
||||
from scipy import sparse
|
||||
except:
|
||||
scipy = None
|
||||
|
||||
|
||||
if sys.version_info[0] < 3:
|
||||
range = xrange
|
||||
from itertools import izip as zip
|
||||
_cstr = lambda s: s.encode("utf-8") if isinstance(s,unicode) else str(s)
|
||||
else:
|
||||
_cstr = lambda s: bytes(s, "utf-8")
|
||||
|
||||
__all__ = ['svm_load_model', 'svm_predict', 'svm_save_model', 'svm_train'] + svm_all + common_all
|
||||
|
||||
|
||||
def svm_load_model(model_file_name):
|
||||
"""
|
||||
svm_load_model(model_file_name) -> model
|
||||
|
||||
Load a LIBSVM model from model_file_name and return.
|
||||
"""
|
||||
model = libsvm.svm_load_model(_cstr(model_file_name))
|
||||
if not model:
|
||||
print("can't open model file %s" % model_file_name)
|
||||
return None
|
||||
model = toPyModel(model)
|
||||
return model
|
||||
|
||||
def svm_save_model(model_file_name, model):
|
||||
"""
|
||||
svm_save_model(model_file_name, model) -> None
|
||||
|
||||
Save a LIBSVM model to the file model_file_name.
|
||||
"""
|
||||
libsvm.svm_save_model(_cstr(model_file_name), model)
|
||||
|
||||
def svm_train(arg1, arg2=None, arg3=None):
|
||||
"""
|
||||
svm_train(y, x [, options]) -> model | ACC | MSE
|
||||
|
||||
y: a list/tuple/ndarray of l true labels (type must be int/double).
|
||||
|
||||
x: 1. a list/tuple of l training instances. Feature vector of
|
||||
each training instance is a list/tuple or dictionary.
|
||||
|
||||
2. an l * n numpy ndarray or scipy spmatrix (n: number of features).
|
||||
|
||||
svm_train(prob [, options]) -> model | ACC | MSE
|
||||
svm_train(prob, param) -> model | ACC| MSE
|
||||
|
||||
Train an SVM model from data (y, x) or an svm_problem prob using
|
||||
'options' or an svm_parameter param.
|
||||
If '-v' is specified in 'options' (i.e., cross validation)
|
||||
either accuracy (ACC) or mean-squared error (MSE) is returned.
|
||||
options:
|
||||
-s svm_type : set type of SVM (default 0)
|
||||
0 -- C-SVC (multi-class classification)
|
||||
1 -- nu-SVC (multi-class classification)
|
||||
2 -- one-class SVM
|
||||
3 -- epsilon-SVR (regression)
|
||||
4 -- nu-SVR (regression)
|
||||
-t kernel_type : set type of kernel function (default 2)
|
||||
0 -- linear: u'*v
|
||||
1 -- polynomial: (gamma*u'*v + coef0)^degree
|
||||
2 -- radial basis function: exp(-gamma*|u-v|^2)
|
||||
3 -- sigmoid: tanh(gamma*u'*v + coef0)
|
||||
4 -- precomputed kernel (kernel values in training_set_file)
|
||||
-d degree : set degree in kernel function (default 3)
|
||||
-g gamma : set gamma in kernel function (default 1/num_features)
|
||||
-r coef0 : set coef0 in kernel function (default 0)
|
||||
-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
|
||||
-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
|
||||
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
|
||||
-m cachesize : set cache memory size in MB (default 100)
|
||||
-e epsilon : set tolerance of termination criterion (default 0.001)
|
||||
-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
|
||||
-b probability_estimates : whether to train a model for probability estimates, 0 or 1 (default 0)
|
||||
-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)
|
||||
-v n: n-fold cross validation mode
|
||||
-q : quiet mode (no outputs)
|
||||
"""
|
||||
prob, param = None, None
|
||||
if isinstance(arg1, (list, tuple)) or (scipy and isinstance(arg1, np.ndarray)):
|
||||
assert isinstance(arg2, (list, tuple)) or (scipy and isinstance(arg2, (np.ndarray, sparse.spmatrix)))
|
||||
y, x, options = arg1, arg2, arg3
|
||||
param = svm_parameter(options)
|
||||
prob = svm_problem(y, x, isKernel=(param.kernel_type == kernel_names.PRECOMPUTED))
|
||||
elif isinstance(arg1, svm_problem):
|
||||
prob = arg1
|
||||
if isinstance(arg2, svm_parameter):
|
||||
param = arg2
|
||||
else:
|
||||
param = svm_parameter(arg2)
|
||||
if prob == None or param == None:
|
||||
raise TypeError("Wrong types for the arguments")
|
||||
|
||||
if param.kernel_type == kernel_names.PRECOMPUTED:
|
||||
for i in range(prob.l):
|
||||
xi = prob.x[i]
|
||||
idx, val = xi[0].index, xi[0].value
|
||||
if idx != 0:
|
||||
raise ValueError('Wrong input format: first column must be 0:sample_serial_number')
|
||||
if val <= 0 or val > prob.n:
|
||||
raise ValueError('Wrong input format: sample_serial_number out of range')
|
||||
|
||||
if param.gamma == 0 and prob.n > 0:
|
||||
param.gamma = 1.0 / prob.n
|
||||
libsvm.svm_set_print_string_function(param.print_func)
|
||||
err_msg = libsvm.svm_check_parameter(prob, param)
|
||||
if err_msg:
|
||||
raise ValueError('Error: %s' % err_msg)
|
||||
|
||||
if param.cross_validation:
|
||||
l, nr_fold = prob.l, param.nr_fold
|
||||
target = (c_double * l)()
|
||||
libsvm.svm_cross_validation(prob, param, nr_fold, target)
|
||||
ACC, MSE, SCC = evaluations(prob.y[:l], target[:l])
|
||||
if param.svm_type in [svm_forms.EPSILON_SVR, svm_forms.NU_SVR]:
|
||||
print("Cross Validation Mean squared error = %g" % MSE)
|
||||
print("Cross Validation Squared correlation coefficient = %g" % SCC)
|
||||
return MSE
|
||||
else:
|
||||
print("Cross Validation Accuracy = %g%%" % ACC)
|
||||
return ACC
|
||||
else:
|
||||
m = libsvm.svm_train(prob, param)
|
||||
m = toPyModel(m)
|
||||
|
||||
# If prob is destroyed, data including SVs pointed by m can remain.
|
||||
m.x_space = prob.x_space
|
||||
return m
|
||||
|
||||
def svm_predict(y, x, m, options=""):
|
||||
"""
|
||||
svm_predict(y, x, m [, options]) -> (p_labels, p_acc, p_vals)
|
||||
|
||||
y: a list/tuple/ndarray of l true labels (type must be int/double).
|
||||
It is used for calculating the accuracy. Use [] if true labels are
|
||||
unavailable.
|
||||
|
||||
x: 1. a list/tuple of l training instances. Feature vector of
|
||||
each training instance is a list/tuple or dictionary.
|
||||
|
||||
2. an l * n numpy ndarray or scipy spmatrix (n: number of features).
|
||||
|
||||
Predict data (y, x) with the SVM model m.
|
||||
options:
|
||||
-b probability_estimates: whether to predict probability estimates,
|
||||
0 or 1 (default 0).
|
||||
-q : quiet mode (no outputs).
|
||||
|
||||
The return tuple contains
|
||||
p_labels: a list of predicted labels
|
||||
p_acc: a tuple including accuracy (for classification), mean-squared
|
||||
error, and squared correlation coefficient (for regression).
|
||||
p_vals: a list of decision values or probability estimates (if '-b 1'
|
||||
is specified). If k is the number of classes, for decision values,
|
||||
each element includes results of predicting k(k-1)/2 binary-class
|
||||
SVMs. For probabilities, each element contains k values indicating
|
||||
the probability that the testing instance is in each class.
|
||||
Note that the order of classes here is the same as 'model.label'
|
||||
field in the model structure.
|
||||
"""
|
||||
|
||||
def info(s):
|
||||
print(s)
|
||||
|
||||
if scipy and isinstance(x, np.ndarray):
|
||||
x = np.ascontiguousarray(x) # enforce row-major
|
||||
elif sparse and isinstance(x, sparse.spmatrix):
|
||||
x = x.tocsr()
|
||||
elif not isinstance(x, (list, tuple)):
|
||||
raise TypeError("type of x: {0} is not supported!".format(type(x)))
|
||||
|
||||
if (not isinstance(y, (list, tuple))) and (not (scipy and isinstance(y, np.ndarray))):
|
||||
raise TypeError("type of y: {0} is not supported!".format(type(y)))
|
||||
|
||||
predict_probability = 0
|
||||
argv = options.split()
|
||||
i = 0
|
||||
while i < len(argv):
|
||||
if argv[i] == '-b':
|
||||
i += 1
|
||||
predict_probability = int(argv[i])
|
||||
elif argv[i] == '-q':
|
||||
info = print_null
|
||||
else:
|
||||
raise ValueError("Wrong options")
|
||||
i+=1
|
||||
|
||||
svm_type = m.get_svm_type()
|
||||
is_prob_model = m.is_probability_model()
|
||||
nr_class = m.get_nr_class()
|
||||
pred_labels = []
|
||||
pred_values = []
|
||||
|
||||
if scipy and isinstance(x, sparse.spmatrix):
|
||||
nr_instance = x.shape[0]
|
||||
else:
|
||||
nr_instance = len(x)
|
||||
|
||||
if predict_probability:
|
||||
if not is_prob_model:
|
||||
raise ValueError("Model does not support probabiliy estimates")
|
||||
|
||||
if svm_type in [svm_forms.NU_SVR, svm_forms.EPSILON_SVR]:
|
||||
info("Prob. model for test data: target value = predicted value + z,\n"
|
||||
"z: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g" % m.get_svr_probability());
|
||||
nr_class = 0
|
||||
|
||||
prob_estimates = (c_double * nr_class)()
|
||||
for i in range(nr_instance):
|
||||
if scipy and isinstance(x, sparse.spmatrix):
|
||||
indslice = slice(x.indptr[i], x.indptr[i+1])
|
||||
xi, idx = gen_svm_nodearray((x.indices[indslice], x.data[indslice]), isKernel=(m.param.kernel_type == kernel_names.PRECOMPUTED))
|
||||
else:
|
||||
xi, idx = gen_svm_nodearray(x[i], isKernel=(m.param.kernel_type == kernel_names.PRECOMPUTED))
|
||||
label = libsvm.svm_predict_probability(m, xi, prob_estimates)
|
||||
values = prob_estimates[:nr_class]
|
||||
pred_labels += [label]
|
||||
pred_values += [values]
|
||||
else:
|
||||
if is_prob_model:
|
||||
info("Model supports probability estimates, but disabled in predicton.")
|
||||
if svm_type in [svm_forms.ONE_CLASS, svm_forms.EPSILON_SVR, svm_forms.NU_SVC]:
|
||||
nr_classifier = 1
|
||||
else:
|
||||
nr_classifier = nr_class*(nr_class-1)//2
|
||||
dec_values = (c_double * nr_classifier)()
|
||||
for i in range(nr_instance):
|
||||
if scipy and isinstance(x, sparse.spmatrix):
|
||||
indslice = slice(x.indptr[i], x.indptr[i+1])
|
||||
xi, idx = gen_svm_nodearray((x.indices[indslice], x.data[indslice]), isKernel=(m.param.kernel_type == kernel_names.PRECOMPUTED))
|
||||
else:
|
||||
xi, idx = gen_svm_nodearray(x[i], isKernel=(m.param.kernel_type == kernel_names.PRECOMPUTED))
|
||||
label = libsvm.svm_predict_values(m, xi, dec_values)
|
||||
if(nr_class == 1):
|
||||
values = [1]
|
||||
else:
|
||||
values = dec_values[:nr_classifier]
|
||||
pred_labels += [label]
|
||||
pred_values += [values]
|
||||
|
||||
if len(y) == 0:
|
||||
y = [0] * nr_instance
|
||||
ACC, MSE, SCC = evaluations(y, pred_labels)
|
||||
|
||||
if svm_type in [svm_forms.EPSILON_SVR, svm_forms.NU_SVR]:
|
||||
info("Mean squared error = %g (regression)" % MSE)
|
||||
info("Squared correlation coefficient = %g (regression)" % SCC)
|
||||
else:
|
||||
info("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(round(nr_instance*ACC/100)), nr_instance))
|
||||
|
||||
return pred_labels, (ACC, MSE, SCC), pred_values
|
123
libsvm-3.36/python/setup.py
Normal file
123
libsvm-3.36/python/setup.py
Normal file
@@ -0,0 +1,123 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import sys, os
|
||||
from os import path
|
||||
from shutil import copyfile, rmtree
|
||||
from glob import glob
|
||||
|
||||
from setuptools import setup, Extension
|
||||
from distutils.command.clean import clean as clean_cmd
|
||||
|
||||
# a technique to build a shared library on windows
|
||||
from distutils.command.build_ext import build_ext
|
||||
|
||||
build_ext.get_export_symbols = lambda x, y: []
|
||||
|
||||
|
||||
PACKAGE_DIR = "libsvm"
|
||||
PACKAGE_NAME = "libsvm-official"
|
||||
VERSION = "3.36.0"
|
||||
cpp_dir = "cpp-source"
|
||||
# should be consistent with dynamic_lib_name in libsvm/svm.py
|
||||
dynamic_lib_name = "clib"
|
||||
|
||||
# sources to be included to build the shared library
|
||||
source_codes = [
|
||||
"svm.cpp",
|
||||
]
|
||||
headers = [
|
||||
"svm.h",
|
||||
"svm.def",
|
||||
]
|
||||
|
||||
# license parameters
|
||||
license_source = path.join("..", "COPYRIGHT")
|
||||
license_file = "LICENSE"
|
||||
license_name = "BSD-3-Clause"
|
||||
|
||||
kwargs_for_extension = {
|
||||
"sources": [path.join(cpp_dir, f) for f in source_codes],
|
||||
"depends": [path.join(cpp_dir, f) for f in headers],
|
||||
"include_dirs": [cpp_dir],
|
||||
"language": "c++",
|
||||
}
|
||||
|
||||
# see ../Makefile.win and enable openmp
|
||||
if sys.platform == "win32":
|
||||
kwargs_for_extension.update(
|
||||
{
|
||||
"define_macros": [("_WIN64", ""), ("_CRT_SECURE_NO_DEPRECATE", "")],
|
||||
"extra_link_args": [r"-DEF:{}\svm.def".format(cpp_dir)],
|
||||
"extra_compile_args": ["/openmp"],
|
||||
}
|
||||
)
|
||||
else:
|
||||
kwargs_for_extension.update(
|
||||
{
|
||||
"extra_compile_args": ["-fopenmp"],
|
||||
"extra_link_args": ["-fopenmp"],
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def create_cpp_source():
|
||||
for f in source_codes + headers:
|
||||
src_file = path.join("..", f)
|
||||
tgt_file = path.join(cpp_dir, f)
|
||||
# ensure blas directory is created
|
||||
os.makedirs(path.dirname(tgt_file), exist_ok=True)
|
||||
copyfile(src_file, tgt_file)
|
||||
|
||||
|
||||
class CleanCommand(clean_cmd):
|
||||
def run(self):
|
||||
clean_cmd.run(self)
|
||||
to_be_removed = ["build/", "dist/", "MANIFEST", cpp_dir, "{}.egg-info".format(PACKAGE_NAME), license_file]
|
||||
to_be_removed += glob("./{}/{}.*".format(PACKAGE_DIR, dynamic_lib_name))
|
||||
for root, dirs, files in os.walk(os.curdir, topdown=False):
|
||||
if "__pycache__" in dirs:
|
||||
to_be_removed.append(path.join(root, "__pycache__"))
|
||||
to_be_removed += [f for f in files if f.endswith(".pyc")]
|
||||
|
||||
for f in to_be_removed:
|
||||
print("remove {}".format(f))
|
||||
if f == ".":
|
||||
continue
|
||||
elif path.isfile(f):
|
||||
os.remove(f)
|
||||
elif path.isdir(f):
|
||||
rmtree(f)
|
||||
|
||||
def main():
|
||||
if not path.exists(cpp_dir):
|
||||
create_cpp_source()
|
||||
|
||||
if not path.exists(license_file):
|
||||
copyfile(license_source, license_file)
|
||||
|
||||
with open("README") as f:
|
||||
long_description = f.read()
|
||||
|
||||
setup(
|
||||
name=PACKAGE_NAME,
|
||||
packages=[PACKAGE_DIR],
|
||||
version=VERSION,
|
||||
description="Python binding of LIBSVM",
|
||||
long_description=long_description,
|
||||
long_description_content_type="text/plain",
|
||||
author="ML group @ National Taiwan University",
|
||||
author_email="cjlin@csie.ntu.edu.tw",
|
||||
url="https://www.csie.ntu.edu.tw/~cjlin/libsvm",
|
||||
license=license_name,
|
||||
install_requires=["scipy"],
|
||||
ext_modules=[
|
||||
Extension(
|
||||
"{}.{}".format(PACKAGE_DIR, dynamic_lib_name), **kwargs_for_extension
|
||||
)
|
||||
],
|
||||
cmdclass={"clean": CleanCommand},
|
||||
)
|
||||
|
||||
|
||||
main()
|
||||
|
Reference in New Issue
Block a user