Files
SVMClassifier_cgpt/libsvm-3.36/python/libsvm/svm.py

466 lines
17 KiB
Python

from ctypes import *
from ctypes.util import find_library
from os import path
from glob import glob
from enum import IntEnum
import sys
try:
import numpy as np
import scipy
from scipy import sparse
except:
scipy = None
if sys.version_info[0] < 3:
range = xrange
from itertools import izip as zip
__all__ = ['libsvm', 'svm_problem', 'svm_parameter',
'toPyModel', 'gen_svm_nodearray', 'print_null', 'svm_node', 'svm_forms',
'PRINT_STRING_FUN', 'kernel_names', 'c_double', 'svm_model']
try:
dirname = path.dirname(path.abspath(__file__))
dynamic_lib_name = 'clib.cp*'
path_to_so = glob(path.join(dirname, dynamic_lib_name))[0]
libsvm = CDLL(path_to_so)
except:
try:
if sys.platform == 'win32':
libsvm = CDLL(path.join(dirname, r'..\..\windows\libsvm.dll'))
else:
libsvm = CDLL(path.join(dirname, '../../libsvm.so.4'))
except:
# For unix the prefix 'lib' is not considered.
if find_library('svm'):
libsvm = CDLL(find_library('svm'))
elif find_library('libsvm'):
libsvm = CDLL(find_library('libsvm'))
else:
raise Exception('LIBSVM library not found.')
class svm_forms(IntEnum):
C_SVC = 0
NU_SVC = 1
ONE_CLASS = 2
EPSILON_SVR = 3
NU_SVR = 4
class kernel_names(IntEnum):
LINEAR = 0
POLY = 1
RBF = 2
SIGMOID = 3
PRECOMPUTED = 4
PRINT_STRING_FUN = CFUNCTYPE(None, c_char_p)
def print_null(s):
return
# In multi-threading, all threads share the same memory space of
# the dynamic library (libsvm). Thus, we use a module-level
# variable to keep a reference to ctypes print_null, preventing
# python from garbage collecting it in thread B while thread A
# still needs it. Check the usage of svm_set_print_string_function()
# in LIBSVM README for details.
ctypes_print_null = PRINT_STRING_FUN(print_null)
def genFields(names, types):
return list(zip(names, types))
def fillprototype(f, restype, argtypes):
f.restype = restype
f.argtypes = argtypes
class svm_node(Structure):
_names = ["index", "value"]
_types = [c_int, c_double]
_fields_ = genFields(_names, _types)
def __init__(self, index=-1, value=0):
self.index, self.value = index, value
def __str__(self):
return '%d:%g' % (self.index, self.value)
def gen_svm_nodearray(xi, feature_max=None, isKernel=False):
if feature_max:
assert(isinstance(feature_max, int))
xi_shift = 0 # ensure correct indices of xi
if scipy and isinstance(xi, tuple) and len(xi) == 2\
and isinstance(xi[0], np.ndarray) and isinstance(xi[1], np.ndarray): # for a sparse vector
if not isKernel:
index_range = xi[0] + 1 # index starts from 1
else:
index_range = xi[0] # index starts from 0 for precomputed kernel
if feature_max:
index_range = index_range[np.where(index_range <= feature_max)]
elif scipy and isinstance(xi, np.ndarray):
if not isKernel:
xi_shift = 1
index_range = xi.nonzero()[0] + 1 # index starts from 1
else:
index_range = np.arange(0, len(xi)) # index starts from 0 for precomputed kernel
if feature_max:
index_range = index_range[np.where(index_range <= feature_max)]
elif isinstance(xi, (dict, list, tuple)):
if isinstance(xi, dict):
index_range = sorted(xi.keys())
elif isinstance(xi, (list, tuple)):
if not isKernel:
xi_shift = 1
index_range = range(1, len(xi) + 1) # index starts from 1
else:
index_range = range(0, len(xi)) # index starts from 0 for precomputed kernel
if feature_max:
index_range = list(filter(lambda j: j <= feature_max, index_range))
if not isKernel:
index_range = list(filter(lambda j:xi[j-xi_shift] != 0, index_range))
else:
raise TypeError('xi should be a dictionary, list, tuple, 1-d numpy array, or tuple of (index, data)')
ret = (svm_node*(len(index_range)+1))()
ret[-1].index = -1
if scipy and isinstance(xi, tuple) and len(xi) == 2\
and isinstance(xi[0], np.ndarray) and isinstance(xi[1], np.ndarray): # for a sparse vector
# since xi=(indices, values), we must sort them simultaneously.
for idx, arg in enumerate(np.argsort(index_range)):
ret[idx].index = index_range[arg]
ret[idx].value = (xi[1])[arg]
else:
for idx, j in enumerate(index_range):
ret[idx].index = j
ret[idx].value = xi[j - xi_shift]
max_idx = 0
if len(index_range) > 0:
max_idx = index_range[-1]
return ret, max_idx
try:
from numba import jit
jit_enabled = True
except:
# We need to support two cases: when jit is called with no arguments, and when jit is called with
# a keyword argument.
def jit(func=None, *args, **kwargs):
if func is None:
# This handles the case where jit is used with parentheses: @jit(nopython=True)
return lambda x: x
else:
# This handles the case where jit is used without parentheses: @jit
return func
jit_enabled = False
@jit(nopython=True)
def csr_to_problem_jit(l, x_val, x_ind, x_rowptr, prob_val, prob_ind, prob_rowptr, indx_start):
for i in range(l):
b1,e1 = x_rowptr[i], x_rowptr[i+1]
b2,e2 = prob_rowptr[i], prob_rowptr[i+1]-1
for j in range(b1,e1):
prob_ind[j-b1+b2] = x_ind[j]+indx_start
prob_val[j-b1+b2] = x_val[j]
def csr_to_problem_nojit(l, x_val, x_ind, x_rowptr, prob_val, prob_ind, prob_rowptr, indx_start):
for i in range(l):
x_slice = slice(x_rowptr[i], x_rowptr[i+1])
prob_slice = slice(prob_rowptr[i], prob_rowptr[i+1]-1)
prob_ind[prob_slice] = x_ind[x_slice]+indx_start
prob_val[prob_slice] = x_val[x_slice]
def csr_to_problem(x, prob, isKernel):
if not x.has_sorted_indices:
x.sort_indices()
# Extra space for termination node and (possibly) bias term
x_space = prob.x_space = np.empty((x.nnz+x.shape[0]), dtype=svm_node)
# rowptr has to be a 64bit integer because it will later be used for pointer arithmetic,
# which overflows when the added pointer points to an address that is numerically high.
prob.rowptr = x.indptr.astype(np.int64, copy=True)
prob.rowptr[1:] += np.arange(1,x.shape[0]+1)
prob_ind = x_space["index"]
prob_val = x_space["value"]
prob_ind[:] = -1
if not isKernel:
indx_start = 1 # index starts from 1
else:
indx_start = 0 # index starts from 0 for precomputed kernel
if jit_enabled:
csr_to_problem_jit(x.shape[0], x.data, x.indices, x.indptr, prob_val, prob_ind, prob.rowptr, indx_start)
else:
csr_to_problem_nojit(x.shape[0], x.data, x.indices, x.indptr, prob_val, prob_ind, prob.rowptr, indx_start)
class svm_problem(Structure):
_names = ["l", "y", "x"]
_types = [c_int, POINTER(c_double), POINTER(POINTER(svm_node))]
_fields_ = genFields(_names, _types)
def __init__(self, y, x, isKernel=False):
if (not isinstance(y, (list, tuple))) and (not (scipy and isinstance(y, np.ndarray))):
raise TypeError("type of y: {0} is not supported!".format(type(y)))
if isinstance(x, (list, tuple)):
if len(y) != len(x):
raise ValueError("len(y) != len(x)")
elif scipy != None and isinstance(x, (np.ndarray, sparse.spmatrix)):
if len(y) != x.shape[0]:
raise ValueError("len(y) != len(x)")
if isinstance(x, np.ndarray):
x = np.ascontiguousarray(x) # enforce row-major
if isinstance(x, sparse.spmatrix):
x = x.tocsr()
pass
else:
raise TypeError("type of x: {0} is not supported!".format(type(x)))
self.l = l = len(y)
max_idx = 0
x_space = self.x_space = []
if scipy != None and isinstance(x, sparse.csr_matrix):
csr_to_problem(x, self, isKernel)
max_idx = x.shape[1]
else:
for i, xi in enumerate(x):
tmp_xi, tmp_idx = gen_svm_nodearray(xi,isKernel=isKernel)
x_space += [tmp_xi]
max_idx = max(max_idx, tmp_idx)
self.n = max_idx
self.y = (c_double * l)()
if scipy != None and isinstance(y, np.ndarray):
np.ctypeslib.as_array(self.y, (self.l,))[:] = y
else:
for i, yi in enumerate(y): self.y[i] = yi
self.x = (POINTER(svm_node) * l)()
if scipy != None and isinstance(x, sparse.csr_matrix):
base = addressof(self.x_space.ctypes.data_as(POINTER(svm_node))[0])
x_ptr = cast(self.x, POINTER(c_uint64))
x_ptr = np.ctypeslib.as_array(x_ptr,(self.l,))
x_ptr[:] = self.rowptr[:-1]*sizeof(svm_node)+base
else:
for i, xi in enumerate(self.x_space): self.x[i] = xi
class svm_parameter(Structure):
_names = ["svm_type", "kernel_type", "degree", "gamma", "coef0",
"cache_size", "eps", "C", "nr_weight", "weight_label", "weight",
"nu", "p", "shrinking", "probability"]
_types = [c_int, c_int, c_int, c_double, c_double,
c_double, c_double, c_double, c_int, POINTER(c_int), POINTER(c_double),
c_double, c_double, c_int, c_int]
_fields_ = genFields(_names, _types)
def __init__(self, options = None):
if options == None:
options = ''
self.parse_options(options)
def __str__(self):
s = ''
attrs = svm_parameter._names + list(self.__dict__.keys())
values = map(lambda attr: getattr(self, attr), attrs)
for attr, val in zip(attrs, values):
s += (' %s: %s\n' % (attr, val))
s = s.strip()
return s
def set_to_default_values(self):
self.svm_type = svm_forms.C_SVC;
self.kernel_type = kernel_names.RBF
self.degree = 3
self.gamma = 0
self.coef0 = 0
self.nu = 0.5
self.cache_size = 100
self.C = 1
self.eps = 0.001
self.p = 0.1
self.shrinking = 1
self.probability = 0
self.nr_weight = 0
self.weight_label = None
self.weight = None
self.cross_validation = False
self.nr_fold = 0
self.print_func = cast(None, PRINT_STRING_FUN)
def parse_options(self, options):
if isinstance(options, list):
argv = options
elif isinstance(options, str):
argv = options.split()
else:
raise TypeError("arg 1 should be a list or a str.")
self.set_to_default_values()
self.print_func = cast(None, PRINT_STRING_FUN)
weight_label = []
weight = []
i = 0
while i < len(argv):
if argv[i] == "-s":
i = i + 1
self.svm_type = svm_forms(int(argv[i]))
elif argv[i] == "-t":
i = i + 1
self.kernel_type = kernel_names(int(argv[i]))
elif argv[i] == "-d":
i = i + 1
self.degree = int(argv[i])
elif argv[i] == "-g":
i = i + 1
self.gamma = float(argv[i])
elif argv[i] == "-r":
i = i + 1
self.coef0 = float(argv[i])
elif argv[i] == "-n":
i = i + 1
self.nu = float(argv[i])
elif argv[i] == "-m":
i = i + 1
self.cache_size = float(argv[i])
elif argv[i] == "-c":
i = i + 1
self.C = float(argv[i])
elif argv[i] == "-e":
i = i + 1
self.eps = float(argv[i])
elif argv[i] == "-p":
i = i + 1
self.p = float(argv[i])
elif argv[i] == "-h":
i = i + 1
self.shrinking = int(argv[i])
elif argv[i] == "-b":
i = i + 1
self.probability = int(argv[i])
elif argv[i] == "-q":
self.print_func = ctypes_print_null
elif argv[i] == "-v":
i = i + 1
self.cross_validation = 1
self.nr_fold = int(argv[i])
if self.nr_fold < 2:
raise ValueError("n-fold cross validation: n must >= 2")
elif argv[i].startswith("-w"):
i = i + 1
self.nr_weight += 1
weight_label += [int(argv[i-1][2:])]
weight += [float(argv[i])]
else:
raise ValueError("Wrong options")
i += 1
libsvm.svm_set_print_string_function(self.print_func)
self.weight_label = (c_int*self.nr_weight)()
self.weight = (c_double*self.nr_weight)()
for i in range(self.nr_weight):
self.weight[i] = weight[i]
self.weight_label[i] = weight_label[i]
class svm_model(Structure):
_names = ['param', 'nr_class', 'l', 'SV', 'sv_coef', 'rho',
'probA', 'probB', 'prob_density_marks', 'sv_indices',
'label', 'nSV', 'free_sv']
_types = [svm_parameter, c_int, c_int, POINTER(POINTER(svm_node)),
POINTER(POINTER(c_double)), POINTER(c_double),
POINTER(c_double), POINTER(c_double), POINTER(c_double),
POINTER(c_int), POINTER(c_int), POINTER(c_int), c_int]
_fields_ = genFields(_names, _types)
def __init__(self):
self.__createfrom__ = 'python'
def __del__(self):
# free memory created by C to avoid memory leak
if hasattr(self, '__createfrom__') and self.__createfrom__ == 'C':
libsvm.svm_free_and_destroy_model(pointer(pointer(self)))
def get_svm_type(self):
return libsvm.svm_get_svm_type(self)
def get_nr_class(self):
return libsvm.svm_get_nr_class(self)
def get_svr_probability(self):
return libsvm.svm_get_svr_probability(self)
def get_labels(self):
nr_class = self.get_nr_class()
labels = (c_int * nr_class)()
libsvm.svm_get_labels(self, labels)
return labels[:nr_class]
def get_sv_indices(self):
total_sv = self.get_nr_sv()
sv_indices = (c_int * total_sv)()
libsvm.svm_get_sv_indices(self, sv_indices)
return sv_indices[:total_sv]
def get_nr_sv(self):
return libsvm.svm_get_nr_sv(self)
def is_probability_model(self):
return (libsvm.svm_check_probability_model(self) == 1)
def get_sv_coef(self):
return [tuple(self.sv_coef[j][i] for j in range(self.nr_class - 1))
for i in range(self.l)]
def get_SV(self):
result = []
for sparse_sv in self.SV[:self.l]:
row = dict()
i = 0
while True:
if sparse_sv[i].index == -1:
break
row[sparse_sv[i].index] = sparse_sv[i].value
i += 1
result.append(row)
return result
def toPyModel(model_ptr):
"""
toPyModel(model_ptr) -> svm_model
Convert a ctypes POINTER(svm_model) to a Python svm_model
"""
if bool(model_ptr) == False:
raise ValueError("Null pointer")
m = model_ptr.contents
m.__createfrom__ = 'C'
return m
fillprototype(libsvm.svm_train, POINTER(svm_model), [POINTER(svm_problem), POINTER(svm_parameter)])
fillprototype(libsvm.svm_cross_validation, None, [POINTER(svm_problem), POINTER(svm_parameter), c_int, POINTER(c_double)])
fillprototype(libsvm.svm_save_model, c_int, [c_char_p, POINTER(svm_model)])
fillprototype(libsvm.svm_load_model, POINTER(svm_model), [c_char_p])
fillprototype(libsvm.svm_get_svm_type, c_int, [POINTER(svm_model)])
fillprototype(libsvm.svm_get_nr_class, c_int, [POINTER(svm_model)])
fillprototype(libsvm.svm_get_labels, None, [POINTER(svm_model), POINTER(c_int)])
fillprototype(libsvm.svm_get_sv_indices, None, [POINTER(svm_model), POINTER(c_int)])
fillprototype(libsvm.svm_get_nr_sv, c_int, [POINTER(svm_model)])
fillprototype(libsvm.svm_get_svr_probability, c_double, [POINTER(svm_model)])
fillprototype(libsvm.svm_predict_values, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)])
fillprototype(libsvm.svm_predict, c_double, [POINTER(svm_model), POINTER(svm_node)])
fillprototype(libsvm.svm_predict_probability, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)])
fillprototype(libsvm.svm_free_model_content, None, [POINTER(svm_model)])
fillprototype(libsvm.svm_free_and_destroy_model, None, [POINTER(POINTER(svm_model))])
fillprototype(libsvm.svm_destroy_param, None, [POINTER(svm_parameter)])
fillprototype(libsvm.svm_check_parameter, c_char_p, [POINTER(svm_problem), POINTER(svm_parameter)])
fillprototype(libsvm.svm_check_probability_model, c_int, [POINTER(svm_model)])
fillprototype(libsvm.svm_set_print_string_function, None, [PRINT_STRING_FUN])