First commit
This commit is contained in:
200
libsvm-3.36/java/svm_predict.java
Normal file
200
libsvm-3.36/java/svm_predict.java
Normal file
@@ -0,0 +1,200 @@
|
||||
import libsvm.*;
|
||||
import java.io.*;
|
||||
import java.util.*;
|
||||
|
||||
class svm_predict {
|
||||
private static svm_print_interface svm_print_null = new svm_print_interface()
|
||||
{
|
||||
public void print(String s) {}
|
||||
};
|
||||
|
||||
private static svm_print_interface svm_print_stdout = new svm_print_interface()
|
||||
{
|
||||
public void print(String s)
|
||||
{
|
||||
System.out.print(s);
|
||||
}
|
||||
};
|
||||
|
||||
private static svm_print_interface svm_print_string = svm_print_stdout;
|
||||
|
||||
static void info(String s)
|
||||
{
|
||||
svm_print_string.print(s);
|
||||
}
|
||||
|
||||
private static double atof(String s)
|
||||
{
|
||||
return Double.valueOf(s).doubleValue();
|
||||
}
|
||||
|
||||
private static int atoi(String s)
|
||||
{
|
||||
return Integer.parseInt(s);
|
||||
}
|
||||
|
||||
private static void predict(BufferedReader input, DataOutputStream output, svm_model model, int predict_probability) throws IOException
|
||||
{
|
||||
int correct = 0;
|
||||
int total = 0;
|
||||
double error = 0;
|
||||
double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
|
||||
|
||||
int svm_type=svm.svm_get_svm_type(model);
|
||||
int nr_class=svm.svm_get_nr_class(model);
|
||||
double[] prob_estimates=null;
|
||||
|
||||
if(predict_probability == 1)
|
||||
{
|
||||
if(svm_type == svm_parameter.EPSILON_SVR ||
|
||||
svm_type == svm_parameter.NU_SVR)
|
||||
{
|
||||
svm_predict.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma="+svm.svm_get_svr_probability(model)+"\n");
|
||||
}
|
||||
else if(svm_type == svm_parameter.ONE_CLASS)
|
||||
{
|
||||
// nr_class = 2 for ONE_CLASS
|
||||
prob_estimates = new double[nr_class];
|
||||
output.writeBytes("label normal outlier\n");
|
||||
}
|
||||
else
|
||||
{
|
||||
int[] labels=new int[nr_class];
|
||||
svm.svm_get_labels(model,labels);
|
||||
prob_estimates = new double[nr_class];
|
||||
output.writeBytes("labels");
|
||||
for(int j=0;j<nr_class;j++)
|
||||
output.writeBytes(" "+labels[j]);
|
||||
output.writeBytes("\n");
|
||||
}
|
||||
}
|
||||
while(true)
|
||||
{
|
||||
String line = input.readLine();
|
||||
if(line == null) break;
|
||||
|
||||
StringTokenizer st = new StringTokenizer(line," \t\n\r\f:");
|
||||
|
||||
double target_label = atof(st.nextToken());
|
||||
int m = st.countTokens()/2;
|
||||
svm_node[] x = new svm_node[m];
|
||||
for(int j=0;j<m;j++)
|
||||
{
|
||||
x[j] = new svm_node();
|
||||
x[j].index = atoi(st.nextToken());
|
||||
x[j].value = atof(st.nextToken());
|
||||
}
|
||||
|
||||
double predict_label;
|
||||
if (predict_probability==1 && (svm_type==svm_parameter.C_SVC || svm_type==svm_parameter.NU_SVC || svm_type==svm_parameter.ONE_CLASS))
|
||||
{
|
||||
predict_label = svm.svm_predict_probability(model,x,prob_estimates);
|
||||
output.writeBytes(predict_label+" ");
|
||||
for(int j=0;j<nr_class;j++)
|
||||
output.writeBytes(prob_estimates[j]+" ");
|
||||
output.writeBytes("\n");
|
||||
}
|
||||
else
|
||||
{
|
||||
predict_label = svm.svm_predict(model,x);
|
||||
output.writeBytes(predict_label+"\n");
|
||||
}
|
||||
|
||||
if(predict_label == target_label)
|
||||
++correct;
|
||||
error += (predict_label-target_label)*(predict_label-target_label);
|
||||
sump += predict_label;
|
||||
sumt += target_label;
|
||||
sumpp += predict_label*predict_label;
|
||||
sumtt += target_label*target_label;
|
||||
sumpt += predict_label*target_label;
|
||||
++total;
|
||||
}
|
||||
if(svm_type == svm_parameter.EPSILON_SVR ||
|
||||
svm_type == svm_parameter.NU_SVR)
|
||||
{
|
||||
svm_predict.info("Mean squared error = "+error/total+" (regression)\n");
|
||||
svm_predict.info("Squared correlation coefficient = "+
|
||||
((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
|
||||
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))+
|
||||
" (regression)\n");
|
||||
}
|
||||
else
|
||||
svm_predict.info("Accuracy = "+(double)correct/total*100+
|
||||
"% ("+correct+"/"+total+") (classification)\n");
|
||||
}
|
||||
|
||||
private static void exit_with_help()
|
||||
{
|
||||
System.err.print("usage: svm_predict [options] test_file model_file output_file\n"
|
||||
+"options:\n"
|
||||
+"-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n"
|
||||
+"-q : quiet mode (no outputs)\n");
|
||||
System.exit(1);
|
||||
}
|
||||
|
||||
public static void main(String argv[]) throws IOException
|
||||
{
|
||||
int i, predict_probability=0;
|
||||
svm_print_string = svm_print_stdout;
|
||||
|
||||
// parse options
|
||||
for(i=0;i<argv.length;i++)
|
||||
{
|
||||
if(argv[i].charAt(0) != '-') break;
|
||||
++i;
|
||||
switch(argv[i-1].charAt(1))
|
||||
{
|
||||
case 'b':
|
||||
predict_probability = atoi(argv[i]);
|
||||
break;
|
||||
case 'q':
|
||||
svm_print_string = svm_print_null;
|
||||
i--;
|
||||
break;
|
||||
default:
|
||||
System.err.print("Unknown option: " + argv[i-1] + "\n");
|
||||
exit_with_help();
|
||||
}
|
||||
}
|
||||
if(i>=argv.length-2)
|
||||
exit_with_help();
|
||||
try
|
||||
{
|
||||
BufferedReader input = new BufferedReader(new FileReader(argv[i]));
|
||||
DataOutputStream output = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(argv[i+2])));
|
||||
svm_model model = svm.svm_load_model(argv[i+1]);
|
||||
if (model == null)
|
||||
{
|
||||
System.err.print("can't open model file "+argv[i+1]+"\n");
|
||||
System.exit(1);
|
||||
}
|
||||
if(predict_probability == 1)
|
||||
{
|
||||
if(svm.svm_check_probability_model(model)==0)
|
||||
{
|
||||
System.err.print("Model does not support probabiliy estimates\n");
|
||||
System.exit(1);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if(svm.svm_check_probability_model(model)!=0)
|
||||
{
|
||||
svm_predict.info("Model supports probability estimates, but disabled in prediction.\n");
|
||||
}
|
||||
}
|
||||
predict(input,output,model,predict_probability);
|
||||
input.close();
|
||||
output.close();
|
||||
}
|
||||
catch(FileNotFoundException e)
|
||||
{
|
||||
exit_with_help();
|
||||
}
|
||||
catch(ArrayIndexOutOfBoundsException e)
|
||||
{
|
||||
exit_with_help();
|
||||
}
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user