201 lines
5.2 KiB
Java
201 lines
5.2 KiB
Java
import libsvm.*;
|
|
import java.io.*;
|
|
import java.util.*;
|
|
|
|
class svm_predict {
|
|
private static svm_print_interface svm_print_null = new svm_print_interface()
|
|
{
|
|
public void print(String s) {}
|
|
};
|
|
|
|
private static svm_print_interface svm_print_stdout = new svm_print_interface()
|
|
{
|
|
public void print(String s)
|
|
{
|
|
System.out.print(s);
|
|
}
|
|
};
|
|
|
|
private static svm_print_interface svm_print_string = svm_print_stdout;
|
|
|
|
static void info(String s)
|
|
{
|
|
svm_print_string.print(s);
|
|
}
|
|
|
|
private static double atof(String s)
|
|
{
|
|
return Double.valueOf(s).doubleValue();
|
|
}
|
|
|
|
private static int atoi(String s)
|
|
{
|
|
return Integer.parseInt(s);
|
|
}
|
|
|
|
private static void predict(BufferedReader input, DataOutputStream output, svm_model model, int predict_probability) throws IOException
|
|
{
|
|
int correct = 0;
|
|
int total = 0;
|
|
double error = 0;
|
|
double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
|
|
|
|
int svm_type=svm.svm_get_svm_type(model);
|
|
int nr_class=svm.svm_get_nr_class(model);
|
|
double[] prob_estimates=null;
|
|
|
|
if(predict_probability == 1)
|
|
{
|
|
if(svm_type == svm_parameter.EPSILON_SVR ||
|
|
svm_type == svm_parameter.NU_SVR)
|
|
{
|
|
svm_predict.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma="+svm.svm_get_svr_probability(model)+"\n");
|
|
}
|
|
else if(svm_type == svm_parameter.ONE_CLASS)
|
|
{
|
|
// nr_class = 2 for ONE_CLASS
|
|
prob_estimates = new double[nr_class];
|
|
output.writeBytes("label normal outlier\n");
|
|
}
|
|
else
|
|
{
|
|
int[] labels=new int[nr_class];
|
|
svm.svm_get_labels(model,labels);
|
|
prob_estimates = new double[nr_class];
|
|
output.writeBytes("labels");
|
|
for(int j=0;j<nr_class;j++)
|
|
output.writeBytes(" "+labels[j]);
|
|
output.writeBytes("\n");
|
|
}
|
|
}
|
|
while(true)
|
|
{
|
|
String line = input.readLine();
|
|
if(line == null) break;
|
|
|
|
StringTokenizer st = new StringTokenizer(line," \t\n\r\f:");
|
|
|
|
double target_label = atof(st.nextToken());
|
|
int m = st.countTokens()/2;
|
|
svm_node[] x = new svm_node[m];
|
|
for(int j=0;j<m;j++)
|
|
{
|
|
x[j] = new svm_node();
|
|
x[j].index = atoi(st.nextToken());
|
|
x[j].value = atof(st.nextToken());
|
|
}
|
|
|
|
double predict_label;
|
|
if (predict_probability==1 && (svm_type==svm_parameter.C_SVC || svm_type==svm_parameter.NU_SVC || svm_type==svm_parameter.ONE_CLASS))
|
|
{
|
|
predict_label = svm.svm_predict_probability(model,x,prob_estimates);
|
|
output.writeBytes(predict_label+" ");
|
|
for(int j=0;j<nr_class;j++)
|
|
output.writeBytes(prob_estimates[j]+" ");
|
|
output.writeBytes("\n");
|
|
}
|
|
else
|
|
{
|
|
predict_label = svm.svm_predict(model,x);
|
|
output.writeBytes(predict_label+"\n");
|
|
}
|
|
|
|
if(predict_label == target_label)
|
|
++correct;
|
|
error += (predict_label-target_label)*(predict_label-target_label);
|
|
sump += predict_label;
|
|
sumt += target_label;
|
|
sumpp += predict_label*predict_label;
|
|
sumtt += target_label*target_label;
|
|
sumpt += predict_label*target_label;
|
|
++total;
|
|
}
|
|
if(svm_type == svm_parameter.EPSILON_SVR ||
|
|
svm_type == svm_parameter.NU_SVR)
|
|
{
|
|
svm_predict.info("Mean squared error = "+error/total+" (regression)\n");
|
|
svm_predict.info("Squared correlation coefficient = "+
|
|
((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
|
|
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))+
|
|
" (regression)\n");
|
|
}
|
|
else
|
|
svm_predict.info("Accuracy = "+(double)correct/total*100+
|
|
"% ("+correct+"/"+total+") (classification)\n");
|
|
}
|
|
|
|
private static void exit_with_help()
|
|
{
|
|
System.err.print("usage: svm_predict [options] test_file model_file output_file\n"
|
|
+"options:\n"
|
|
+"-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n"
|
|
+"-q : quiet mode (no outputs)\n");
|
|
System.exit(1);
|
|
}
|
|
|
|
public static void main(String argv[]) throws IOException
|
|
{
|
|
int i, predict_probability=0;
|
|
svm_print_string = svm_print_stdout;
|
|
|
|
// parse options
|
|
for(i=0;i<argv.length;i++)
|
|
{
|
|
if(argv[i].charAt(0) != '-') break;
|
|
++i;
|
|
switch(argv[i-1].charAt(1))
|
|
{
|
|
case 'b':
|
|
predict_probability = atoi(argv[i]);
|
|
break;
|
|
case 'q':
|
|
svm_print_string = svm_print_null;
|
|
i--;
|
|
break;
|
|
default:
|
|
System.err.print("Unknown option: " + argv[i-1] + "\n");
|
|
exit_with_help();
|
|
}
|
|
}
|
|
if(i>=argv.length-2)
|
|
exit_with_help();
|
|
try
|
|
{
|
|
BufferedReader input = new BufferedReader(new FileReader(argv[i]));
|
|
DataOutputStream output = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(argv[i+2])));
|
|
svm_model model = svm.svm_load_model(argv[i+1]);
|
|
if (model == null)
|
|
{
|
|
System.err.print("can't open model file "+argv[i+1]+"\n");
|
|
System.exit(1);
|
|
}
|
|
if(predict_probability == 1)
|
|
{
|
|
if(svm.svm_check_probability_model(model)==0)
|
|
{
|
|
System.err.print("Model does not support probabiliy estimates\n");
|
|
System.exit(1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(svm.svm_check_probability_model(model)!=0)
|
|
{
|
|
svm_predict.info("Model supports probability estimates, but disabled in prediction.\n");
|
|
}
|
|
}
|
|
predict(input,output,model,predict_probability);
|
|
input.close();
|
|
output.close();
|
|
}
|
|
catch(FileNotFoundException e)
|
|
{
|
|
exit_with_help();
|
|
}
|
|
catch(ArrayIndexOutOfBoundsException e)
|
|
{
|
|
exit_with_help();
|
|
}
|
|
}
|
|
}
|