First commit
This commit is contained in:
26
libsvm-3.36/java/Makefile
Normal file
26
libsvm-3.36/java/Makefile
Normal file
@@ -0,0 +1,26 @@
|
||||
.SUFFIXES: .class .java
|
||||
FILES = libsvm/svm.class libsvm/svm_model.class libsvm/svm_node.class \
|
||||
libsvm/svm_parameter.class libsvm/svm_problem.class \
|
||||
libsvm/svm_print_interface.class \
|
||||
svm_train.class svm_predict.class svm_toy.class svm_scale.class
|
||||
|
||||
#JAVAC = jikes
|
||||
JAVAC_FLAGS = --release 11
|
||||
JAVAC = javac
|
||||
# JAVAC_FLAGS =
|
||||
export CLASSPATH := .:$(CLASSPATH)
|
||||
|
||||
all: $(FILES)
|
||||
jar cvf libsvm.jar *.class libsvm/*.class
|
||||
|
||||
.java.class:
|
||||
$(JAVAC) $(JAVAC_FLAGS) $<
|
||||
|
||||
libsvm/svm.java: libsvm/svm.m4
|
||||
m4 libsvm/svm.m4 > libsvm/svm.java
|
||||
|
||||
clean:
|
||||
rm -f libsvm/*.class *.class *.jar libsvm/*~ *~ libsvm/svm.java
|
||||
|
||||
dist: clean all
|
||||
rm *.class libsvm/*.class
|
BIN
libsvm-3.36/java/libsvm.jar
Normal file
BIN
libsvm-3.36/java/libsvm.jar
Normal file
Binary file not shown.
2972
libsvm-3.36/java/libsvm/svm.java
Normal file
2972
libsvm-3.36/java/libsvm/svm.java
Normal file
File diff suppressed because it is too large
Load Diff
2972
libsvm-3.36/java/libsvm/svm.m4
Normal file
2972
libsvm-3.36/java/libsvm/svm.m4
Normal file
File diff suppressed because it is too large
Load Diff
23
libsvm-3.36/java/libsvm/svm_model.java
Normal file
23
libsvm-3.36/java/libsvm/svm_model.java
Normal file
@@ -0,0 +1,23 @@
|
||||
//
|
||||
// svm_model
|
||||
//
|
||||
package libsvm;
|
||||
public class svm_model implements java.io.Serializable
|
||||
{
|
||||
public svm_parameter param; // parameter
|
||||
public int nr_class; // number of classes, = 2 in regression/one class svm
|
||||
public int l; // total #SV
|
||||
public svm_node[][] SV; // SVs (SV[l])
|
||||
public double[][] sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l])
|
||||
public double[] rho; // constants in decision functions (rho[k*(k-1)/2])
|
||||
public double[] probA; // pariwise probability information
|
||||
public double[] probB;
|
||||
public double[] prob_density_marks; // probability information for ONE_CLASS
|
||||
public int[] sv_indices; // sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set
|
||||
|
||||
// for classification only
|
||||
|
||||
public int[] label; // label of each class (label[k])
|
||||
public int[] nSV; // number of SVs for each class (nSV[k])
|
||||
// nSV[0] + nSV[1] + ... + nSV[k-1] = l
|
||||
};
|
6
libsvm-3.36/java/libsvm/svm_node.java
Normal file
6
libsvm-3.36/java/libsvm/svm_node.java
Normal file
@@ -0,0 +1,6 @@
|
||||
package libsvm;
|
||||
public class svm_node implements java.io.Serializable
|
||||
{
|
||||
public int index;
|
||||
public double value;
|
||||
}
|
47
libsvm-3.36/java/libsvm/svm_parameter.java
Normal file
47
libsvm-3.36/java/libsvm/svm_parameter.java
Normal file
@@ -0,0 +1,47 @@
|
||||
package libsvm;
|
||||
public class svm_parameter implements Cloneable,java.io.Serializable
|
||||
{
|
||||
/* svm_type */
|
||||
public static final int C_SVC = 0;
|
||||
public static final int NU_SVC = 1;
|
||||
public static final int ONE_CLASS = 2;
|
||||
public static final int EPSILON_SVR = 3;
|
||||
public static final int NU_SVR = 4;
|
||||
|
||||
/* kernel_type */
|
||||
public static final int LINEAR = 0;
|
||||
public static final int POLY = 1;
|
||||
public static final int RBF = 2;
|
||||
public static final int SIGMOID = 3;
|
||||
public static final int PRECOMPUTED = 4;
|
||||
|
||||
public int svm_type;
|
||||
public int kernel_type;
|
||||
public int degree; // for poly
|
||||
public double gamma; // for poly/rbf/sigmoid
|
||||
public double coef0; // for poly/sigmoid
|
||||
|
||||
// these are for training only
|
||||
public double cache_size; // in MB
|
||||
public double eps; // stopping criteria
|
||||
public double C; // for C_SVC, EPSILON_SVR and NU_SVR
|
||||
public int nr_weight; // for C_SVC
|
||||
public int[] weight_label; // for C_SVC
|
||||
public double[] weight; // for C_SVC
|
||||
public double nu; // for NU_SVC, ONE_CLASS, and NU_SVR
|
||||
public double p; // for EPSILON_SVR
|
||||
public int shrinking; // use the shrinking heuristics
|
||||
public int probability; // do probability estimates
|
||||
|
||||
public Object clone()
|
||||
{
|
||||
try
|
||||
{
|
||||
return super.clone();
|
||||
} catch (CloneNotSupportedException e)
|
||||
{
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
5
libsvm-3.36/java/libsvm/svm_print_interface.java
Normal file
5
libsvm-3.36/java/libsvm/svm_print_interface.java
Normal file
@@ -0,0 +1,5 @@
|
||||
package libsvm;
|
||||
public interface svm_print_interface
|
||||
{
|
||||
public void print(String s);
|
||||
}
|
7
libsvm-3.36/java/libsvm/svm_problem.java
Normal file
7
libsvm-3.36/java/libsvm/svm_problem.java
Normal file
@@ -0,0 +1,7 @@
|
||||
package libsvm;
|
||||
public class svm_problem implements java.io.Serializable
|
||||
{
|
||||
public int l;
|
||||
public double[] y;
|
||||
public svm_node[][] x;
|
||||
}
|
200
libsvm-3.36/java/svm_predict.java
Normal file
200
libsvm-3.36/java/svm_predict.java
Normal file
@@ -0,0 +1,200 @@
|
||||
import libsvm.*;
|
||||
import java.io.*;
|
||||
import java.util.*;
|
||||
|
||||
class svm_predict {
|
||||
private static svm_print_interface svm_print_null = new svm_print_interface()
|
||||
{
|
||||
public void print(String s) {}
|
||||
};
|
||||
|
||||
private static svm_print_interface svm_print_stdout = new svm_print_interface()
|
||||
{
|
||||
public void print(String s)
|
||||
{
|
||||
System.out.print(s);
|
||||
}
|
||||
};
|
||||
|
||||
private static svm_print_interface svm_print_string = svm_print_stdout;
|
||||
|
||||
static void info(String s)
|
||||
{
|
||||
svm_print_string.print(s);
|
||||
}
|
||||
|
||||
private static double atof(String s)
|
||||
{
|
||||
return Double.valueOf(s).doubleValue();
|
||||
}
|
||||
|
||||
private static int atoi(String s)
|
||||
{
|
||||
return Integer.parseInt(s);
|
||||
}
|
||||
|
||||
private static void predict(BufferedReader input, DataOutputStream output, svm_model model, int predict_probability) throws IOException
|
||||
{
|
||||
int correct = 0;
|
||||
int total = 0;
|
||||
double error = 0;
|
||||
double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
|
||||
|
||||
int svm_type=svm.svm_get_svm_type(model);
|
||||
int nr_class=svm.svm_get_nr_class(model);
|
||||
double[] prob_estimates=null;
|
||||
|
||||
if(predict_probability == 1)
|
||||
{
|
||||
if(svm_type == svm_parameter.EPSILON_SVR ||
|
||||
svm_type == svm_parameter.NU_SVR)
|
||||
{
|
||||
svm_predict.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma="+svm.svm_get_svr_probability(model)+"\n");
|
||||
}
|
||||
else if(svm_type == svm_parameter.ONE_CLASS)
|
||||
{
|
||||
// nr_class = 2 for ONE_CLASS
|
||||
prob_estimates = new double[nr_class];
|
||||
output.writeBytes("label normal outlier\n");
|
||||
}
|
||||
else
|
||||
{
|
||||
int[] labels=new int[nr_class];
|
||||
svm.svm_get_labels(model,labels);
|
||||
prob_estimates = new double[nr_class];
|
||||
output.writeBytes("labels");
|
||||
for(int j=0;j<nr_class;j++)
|
||||
output.writeBytes(" "+labels[j]);
|
||||
output.writeBytes("\n");
|
||||
}
|
||||
}
|
||||
while(true)
|
||||
{
|
||||
String line = input.readLine();
|
||||
if(line == null) break;
|
||||
|
||||
StringTokenizer st = new StringTokenizer(line," \t\n\r\f:");
|
||||
|
||||
double target_label = atof(st.nextToken());
|
||||
int m = st.countTokens()/2;
|
||||
svm_node[] x = new svm_node[m];
|
||||
for(int j=0;j<m;j++)
|
||||
{
|
||||
x[j] = new svm_node();
|
||||
x[j].index = atoi(st.nextToken());
|
||||
x[j].value = atof(st.nextToken());
|
||||
}
|
||||
|
||||
double predict_label;
|
||||
if (predict_probability==1 && (svm_type==svm_parameter.C_SVC || svm_type==svm_parameter.NU_SVC || svm_type==svm_parameter.ONE_CLASS))
|
||||
{
|
||||
predict_label = svm.svm_predict_probability(model,x,prob_estimates);
|
||||
output.writeBytes(predict_label+" ");
|
||||
for(int j=0;j<nr_class;j++)
|
||||
output.writeBytes(prob_estimates[j]+" ");
|
||||
output.writeBytes("\n");
|
||||
}
|
||||
else
|
||||
{
|
||||
predict_label = svm.svm_predict(model,x);
|
||||
output.writeBytes(predict_label+"\n");
|
||||
}
|
||||
|
||||
if(predict_label == target_label)
|
||||
++correct;
|
||||
error += (predict_label-target_label)*(predict_label-target_label);
|
||||
sump += predict_label;
|
||||
sumt += target_label;
|
||||
sumpp += predict_label*predict_label;
|
||||
sumtt += target_label*target_label;
|
||||
sumpt += predict_label*target_label;
|
||||
++total;
|
||||
}
|
||||
if(svm_type == svm_parameter.EPSILON_SVR ||
|
||||
svm_type == svm_parameter.NU_SVR)
|
||||
{
|
||||
svm_predict.info("Mean squared error = "+error/total+" (regression)\n");
|
||||
svm_predict.info("Squared correlation coefficient = "+
|
||||
((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
|
||||
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))+
|
||||
" (regression)\n");
|
||||
}
|
||||
else
|
||||
svm_predict.info("Accuracy = "+(double)correct/total*100+
|
||||
"% ("+correct+"/"+total+") (classification)\n");
|
||||
}
|
||||
|
||||
private static void exit_with_help()
|
||||
{
|
||||
System.err.print("usage: svm_predict [options] test_file model_file output_file\n"
|
||||
+"options:\n"
|
||||
+"-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n"
|
||||
+"-q : quiet mode (no outputs)\n");
|
||||
System.exit(1);
|
||||
}
|
||||
|
||||
public static void main(String argv[]) throws IOException
|
||||
{
|
||||
int i, predict_probability=0;
|
||||
svm_print_string = svm_print_stdout;
|
||||
|
||||
// parse options
|
||||
for(i=0;i<argv.length;i++)
|
||||
{
|
||||
if(argv[i].charAt(0) != '-') break;
|
||||
++i;
|
||||
switch(argv[i-1].charAt(1))
|
||||
{
|
||||
case 'b':
|
||||
predict_probability = atoi(argv[i]);
|
||||
break;
|
||||
case 'q':
|
||||
svm_print_string = svm_print_null;
|
||||
i--;
|
||||
break;
|
||||
default:
|
||||
System.err.print("Unknown option: " + argv[i-1] + "\n");
|
||||
exit_with_help();
|
||||
}
|
||||
}
|
||||
if(i>=argv.length-2)
|
||||
exit_with_help();
|
||||
try
|
||||
{
|
||||
BufferedReader input = new BufferedReader(new FileReader(argv[i]));
|
||||
DataOutputStream output = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(argv[i+2])));
|
||||
svm_model model = svm.svm_load_model(argv[i+1]);
|
||||
if (model == null)
|
||||
{
|
||||
System.err.print("can't open model file "+argv[i+1]+"\n");
|
||||
System.exit(1);
|
||||
}
|
||||
if(predict_probability == 1)
|
||||
{
|
||||
if(svm.svm_check_probability_model(model)==0)
|
||||
{
|
||||
System.err.print("Model does not support probabiliy estimates\n");
|
||||
System.exit(1);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if(svm.svm_check_probability_model(model)!=0)
|
||||
{
|
||||
svm_predict.info("Model supports probability estimates, but disabled in prediction.\n");
|
||||
}
|
||||
}
|
||||
predict(input,output,model,predict_probability);
|
||||
input.close();
|
||||
output.close();
|
||||
}
|
||||
catch(FileNotFoundException e)
|
||||
{
|
||||
exit_with_help();
|
||||
}
|
||||
catch(ArrayIndexOutOfBoundsException e)
|
||||
{
|
||||
exit_with_help();
|
||||
}
|
||||
}
|
||||
}
|
350
libsvm-3.36/java/svm_scale.java
Normal file
350
libsvm-3.36/java/svm_scale.java
Normal file
@@ -0,0 +1,350 @@
|
||||
import libsvm.*;
|
||||
import java.io.*;
|
||||
import java.util.*;
|
||||
import java.text.DecimalFormat;
|
||||
|
||||
class svm_scale
|
||||
{
|
||||
private String line = null;
|
||||
private double lower = -1.0;
|
||||
private double upper = 1.0;
|
||||
private double y_lower;
|
||||
private double y_upper;
|
||||
private boolean y_scaling = false;
|
||||
private double[] feature_max;
|
||||
private double[] feature_min;
|
||||
private double y_max = -Double.MAX_VALUE;
|
||||
private double y_min = Double.MAX_VALUE;
|
||||
private int max_index;
|
||||
private long num_nonzeros = 0;
|
||||
private long new_num_nonzeros = 0;
|
||||
|
||||
private static void exit_with_help()
|
||||
{
|
||||
System.out.print(
|
||||
"Usage: svm-scale [options] data_filename\n"
|
||||
+"options:\n"
|
||||
+"-l lower : x scaling lower limit (default -1)\n"
|
||||
+"-u upper : x scaling upper limit (default +1)\n"
|
||||
+"-y y_lower y_upper : y scaling limits (default: no y scaling)\n"
|
||||
+"-s save_filename : save scaling parameters to save_filename\n"
|
||||
+"-r restore_filename : restore scaling parameters from restore_filename\n"
|
||||
);
|
||||
System.exit(1);
|
||||
}
|
||||
|
||||
private BufferedReader rewind(BufferedReader fp, String filename) throws IOException
|
||||
{
|
||||
fp.close();
|
||||
return new BufferedReader(new FileReader(filename));
|
||||
}
|
||||
|
||||
private void output_target(double value)
|
||||
{
|
||||
if(y_scaling)
|
||||
{
|
||||
if(value == y_min)
|
||||
value = y_lower;
|
||||
else if(value == y_max)
|
||||
value = y_upper;
|
||||
else
|
||||
value = y_lower + (y_upper-y_lower) *
|
||||
(value-y_min) / (y_max-y_min);
|
||||
}
|
||||
|
||||
System.out.print(value + " ");
|
||||
}
|
||||
|
||||
private void output(int index, double value)
|
||||
{
|
||||
/* skip single-valued attribute */
|
||||
if(feature_max[index] == feature_min[index])
|
||||
return;
|
||||
|
||||
if(value == feature_min[index])
|
||||
value = lower;
|
||||
else if(value == feature_max[index])
|
||||
value = upper;
|
||||
else
|
||||
value = lower + (upper-lower) *
|
||||
(value-feature_min[index])/
|
||||
(feature_max[index]-feature_min[index]);
|
||||
|
||||
if(value != 0)
|
||||
{
|
||||
System.out.print(index + ":" + value + " ");
|
||||
new_num_nonzeros++;
|
||||
}
|
||||
}
|
||||
|
||||
private String readline(BufferedReader fp) throws IOException
|
||||
{
|
||||
line = fp.readLine();
|
||||
return line;
|
||||
}
|
||||
|
||||
private void run(String []argv) throws IOException
|
||||
{
|
||||
int i,index;
|
||||
BufferedReader fp = null, fp_restore = null;
|
||||
String save_filename = null;
|
||||
String restore_filename = null;
|
||||
String data_filename = null;
|
||||
|
||||
|
||||
for(i=0;i<argv.length;i++)
|
||||
{
|
||||
if (argv[i].charAt(0) != '-') break;
|
||||
++i;
|
||||
switch(argv[i-1].charAt(1))
|
||||
{
|
||||
case 'l': lower = Double.parseDouble(argv[i]); break;
|
||||
case 'u': upper = Double.parseDouble(argv[i]); break;
|
||||
case 'y':
|
||||
y_lower = Double.parseDouble(argv[i]);
|
||||
++i;
|
||||
y_upper = Double.parseDouble(argv[i]);
|
||||
y_scaling = true;
|
||||
break;
|
||||
case 's': save_filename = argv[i]; break;
|
||||
case 'r': restore_filename = argv[i]; break;
|
||||
default:
|
||||
System.err.println("unknown option");
|
||||
exit_with_help();
|
||||
}
|
||||
}
|
||||
|
||||
if(!(upper > lower) || (y_scaling && !(y_upper > y_lower)))
|
||||
{
|
||||
System.err.println("inconsistent lower/upper specification");
|
||||
System.exit(1);
|
||||
}
|
||||
if(restore_filename != null && save_filename != null)
|
||||
{
|
||||
System.err.println("cannot use -r and -s simultaneously");
|
||||
System.exit(1);
|
||||
}
|
||||
|
||||
if(argv.length != i+1)
|
||||
exit_with_help();
|
||||
|
||||
data_filename = argv[i];
|
||||
try {
|
||||
fp = new BufferedReader(new FileReader(data_filename));
|
||||
} catch (Exception e) {
|
||||
System.err.println("can't open file " + data_filename);
|
||||
System.exit(1);
|
||||
}
|
||||
|
||||
/* assumption: min index of attributes is 1 */
|
||||
/* pass 1: find out max index of attributes */
|
||||
max_index = 0;
|
||||
|
||||
if(restore_filename != null)
|
||||
{
|
||||
int idx, c;
|
||||
|
||||
try {
|
||||
fp_restore = new BufferedReader(new FileReader(restore_filename));
|
||||
}
|
||||
catch (Exception e) {
|
||||
System.err.println("can't open file " + restore_filename);
|
||||
System.exit(1);
|
||||
}
|
||||
if((c = fp_restore.read()) == 'y')
|
||||
{
|
||||
fp_restore.readLine();
|
||||
fp_restore.readLine();
|
||||
fp_restore.readLine();
|
||||
}
|
||||
fp_restore.readLine();
|
||||
fp_restore.readLine();
|
||||
|
||||
String restore_line = null;
|
||||
while((restore_line = fp_restore.readLine())!=null)
|
||||
{
|
||||
StringTokenizer st2 = new StringTokenizer(restore_line);
|
||||
idx = Integer.parseInt(st2.nextToken());
|
||||
max_index = Math.max(max_index, idx);
|
||||
}
|
||||
fp_restore = rewind(fp_restore, restore_filename);
|
||||
}
|
||||
|
||||
while (readline(fp) != null)
|
||||
{
|
||||
StringTokenizer st = new StringTokenizer(line," \t\n\r\f:");
|
||||
st.nextToken();
|
||||
while(st.hasMoreTokens())
|
||||
{
|
||||
index = Integer.parseInt(st.nextToken());
|
||||
max_index = Math.max(max_index, index);
|
||||
st.nextToken();
|
||||
num_nonzeros++;
|
||||
}
|
||||
}
|
||||
|
||||
try {
|
||||
feature_max = new double[(max_index+1)];
|
||||
feature_min = new double[(max_index+1)];
|
||||
} catch(OutOfMemoryError e) {
|
||||
System.err.println("can't allocate enough memory");
|
||||
System.exit(1);
|
||||
}
|
||||
|
||||
for(i=0;i<=max_index;i++)
|
||||
{
|
||||
feature_max[i] = -Double.MAX_VALUE;
|
||||
feature_min[i] = Double.MAX_VALUE;
|
||||
}
|
||||
|
||||
fp = rewind(fp, data_filename);
|
||||
|
||||
/* pass 2: find out min/max value */
|
||||
while(readline(fp) != null)
|
||||
{
|
||||
int next_index = 1;
|
||||
double target;
|
||||
double value;
|
||||
|
||||
StringTokenizer st = new StringTokenizer(line," \t\n\r\f:");
|
||||
target = Double.parseDouble(st.nextToken());
|
||||
y_max = Math.max(y_max, target);
|
||||
y_min = Math.min(y_min, target);
|
||||
|
||||
while (st.hasMoreTokens())
|
||||
{
|
||||
index = Integer.parseInt(st.nextToken());
|
||||
value = Double.parseDouble(st.nextToken());
|
||||
|
||||
for (i = next_index; i<index; i++)
|
||||
{
|
||||
feature_max[i] = Math.max(feature_max[i], 0);
|
||||
feature_min[i] = Math.min(feature_min[i], 0);
|
||||
}
|
||||
|
||||
feature_max[index] = Math.max(feature_max[index], value);
|
||||
feature_min[index] = Math.min(feature_min[index], value);
|
||||
next_index = index + 1;
|
||||
}
|
||||
|
||||
for(i=next_index;i<=max_index;i++)
|
||||
{
|
||||
feature_max[i] = Math.max(feature_max[i], 0);
|
||||
feature_min[i] = Math.min(feature_min[i], 0);
|
||||
}
|
||||
}
|
||||
|
||||
fp = rewind(fp, data_filename);
|
||||
|
||||
/* pass 2.5: save/restore feature_min/feature_max */
|
||||
if(restore_filename != null)
|
||||
{
|
||||
// fp_restore rewinded in finding max_index
|
||||
int idx, c;
|
||||
double fmin, fmax;
|
||||
|
||||
fp_restore.mark(2); // for reset
|
||||
if((c = fp_restore.read()) == 'y')
|
||||
{
|
||||
fp_restore.readLine(); // pass the '\n' after 'y'
|
||||
StringTokenizer st = new StringTokenizer(fp_restore.readLine());
|
||||
y_lower = Double.parseDouble(st.nextToken());
|
||||
y_upper = Double.parseDouble(st.nextToken());
|
||||
st = new StringTokenizer(fp_restore.readLine());
|
||||
y_min = Double.parseDouble(st.nextToken());
|
||||
y_max = Double.parseDouble(st.nextToken());
|
||||
y_scaling = true;
|
||||
}
|
||||
else
|
||||
fp_restore.reset();
|
||||
|
||||
if(fp_restore.read() == 'x') {
|
||||
fp_restore.readLine(); // pass the '\n' after 'x'
|
||||
StringTokenizer st = new StringTokenizer(fp_restore.readLine());
|
||||
lower = Double.parseDouble(st.nextToken());
|
||||
upper = Double.parseDouble(st.nextToken());
|
||||
String restore_line = null;
|
||||
while((restore_line = fp_restore.readLine())!=null)
|
||||
{
|
||||
StringTokenizer st2 = new StringTokenizer(restore_line);
|
||||
idx = Integer.parseInt(st2.nextToken());
|
||||
fmin = Double.parseDouble(st2.nextToken());
|
||||
fmax = Double.parseDouble(st2.nextToken());
|
||||
if (idx <= max_index)
|
||||
{
|
||||
feature_min[idx] = fmin;
|
||||
feature_max[idx] = fmax;
|
||||
}
|
||||
}
|
||||
}
|
||||
fp_restore.close();
|
||||
}
|
||||
|
||||
if(save_filename != null)
|
||||
{
|
||||
Formatter formatter = new Formatter(new StringBuilder());
|
||||
BufferedWriter fp_save = null;
|
||||
|
||||
try {
|
||||
fp_save = new BufferedWriter(new FileWriter(save_filename));
|
||||
} catch(IOException e) {
|
||||
System.err.println("can't open file " + save_filename);
|
||||
System.exit(1);
|
||||
}
|
||||
|
||||
if(y_scaling)
|
||||
{
|
||||
formatter.format("y\n");
|
||||
formatter.format("%.16g %.16g\n", y_lower, y_upper);
|
||||
formatter.format("%.16g %.16g\n", y_min, y_max);
|
||||
}
|
||||
formatter.format("x\n");
|
||||
formatter.format("%.16g %.16g\n", lower, upper);
|
||||
for(i=1;i<=max_index;i++)
|
||||
{
|
||||
if(feature_min[i] != feature_max[i])
|
||||
formatter.format("%d %.16g %.16g\n", i, feature_min[i], feature_max[i]);
|
||||
}
|
||||
fp_save.write(formatter.toString());
|
||||
fp_save.close();
|
||||
}
|
||||
|
||||
/* pass 3: scale */
|
||||
while(readline(fp) != null)
|
||||
{
|
||||
int next_index = 1;
|
||||
double target;
|
||||
double value;
|
||||
|
||||
StringTokenizer st = new StringTokenizer(line," \t\n\r\f:");
|
||||
target = Double.parseDouble(st.nextToken());
|
||||
output_target(target);
|
||||
while(st.hasMoreElements())
|
||||
{
|
||||
index = Integer.parseInt(st.nextToken());
|
||||
value = Double.parseDouble(st.nextToken());
|
||||
for (i = next_index; i<index; i++)
|
||||
output(i, 0);
|
||||
output(index, value);
|
||||
next_index = index + 1;
|
||||
}
|
||||
|
||||
for(i=next_index;i<= max_index;i++)
|
||||
output(i, 0);
|
||||
System.out.print("\n");
|
||||
}
|
||||
if (new_num_nonzeros > num_nonzeros)
|
||||
System.err.print(
|
||||
"WARNING: original #nonzeros " + num_nonzeros+"\n"
|
||||
+" new #nonzeros " + new_num_nonzeros+"\n"
|
||||
+"Use -l 0 if many original feature values are zeros\n");
|
||||
|
||||
fp.close();
|
||||
}
|
||||
|
||||
public static void main(String argv[]) throws IOException
|
||||
{
|
||||
svm_scale s = new svm_scale();
|
||||
s.run(argv);
|
||||
}
|
||||
}
|
487
libsvm-3.36/java/svm_toy.java
Normal file
487
libsvm-3.36/java/svm_toy.java
Normal file
@@ -0,0 +1,487 @@
|
||||
import libsvm.*;
|
||||
import java.awt.*;
|
||||
import java.util.*;
|
||||
import java.awt.event.*;
|
||||
import java.io.*;
|
||||
|
||||
public class svm_toy {
|
||||
public static void main(String[] args) {
|
||||
svm_toy_frame frame = new svm_toy_frame("svm_toy", 500, 500+50);
|
||||
}
|
||||
}
|
||||
class svm_toy_frame extends Frame {
|
||||
|
||||
static final String DEFAULT_PARAM="-t 2 -c 100";
|
||||
int XLEN;
|
||||
int YLEN;
|
||||
|
||||
// off-screen buffer
|
||||
|
||||
Image buffer;
|
||||
Graphics buffer_gc;
|
||||
|
||||
// pre-allocated colors
|
||||
|
||||
final static Color colors[] =
|
||||
{
|
||||
new Color(0,0,0),
|
||||
new Color(0,120,120),
|
||||
new Color(120,120,0),
|
||||
new Color(120,0,120),
|
||||
new Color(0,200,200),
|
||||
new Color(200,200,0),
|
||||
new Color(200,0,200)
|
||||
};
|
||||
|
||||
class point {
|
||||
point(double x, double y, byte value)
|
||||
{
|
||||
this.x = x;
|
||||
this.y = y;
|
||||
this.value = value;
|
||||
}
|
||||
double x, y;
|
||||
byte value;
|
||||
}
|
||||
|
||||
Vector<point> point_list = new Vector<point>();
|
||||
byte current_value = 1;
|
||||
|
||||
svm_toy_frame(String title, int width, int height)
|
||||
{
|
||||
super(title);
|
||||
this.addWindowListener(new WindowAdapter() {
|
||||
public void windowClosing(WindowEvent e) {
|
||||
System.exit(0);
|
||||
}
|
||||
});
|
||||
this.init();
|
||||
this.setSize(width, height);
|
||||
XLEN = width;
|
||||
YLEN = height-50;
|
||||
this.clear_all();
|
||||
this.setVisible(true);
|
||||
}
|
||||
|
||||
void init()
|
||||
{
|
||||
final Button button_change = new Button("Change");
|
||||
Button button_run = new Button("Run");
|
||||
Button button_clear = new Button("Clear");
|
||||
Button button_save = new Button("Save");
|
||||
Button button_load = new Button("Load");
|
||||
final TextField input_line = new TextField(DEFAULT_PARAM);
|
||||
|
||||
BorderLayout layout = new BorderLayout();
|
||||
this.setLayout(layout);
|
||||
|
||||
Panel p = new Panel();
|
||||
GridBagLayout gridbag = new GridBagLayout();
|
||||
p.setLayout(gridbag);
|
||||
|
||||
GridBagConstraints c = new GridBagConstraints();
|
||||
c.fill = GridBagConstraints.HORIZONTAL;
|
||||
c.weightx = 1;
|
||||
c.gridwidth = 1;
|
||||
gridbag.setConstraints(button_change,c);
|
||||
gridbag.setConstraints(button_run,c);
|
||||
gridbag.setConstraints(button_clear,c);
|
||||
gridbag.setConstraints(button_save,c);
|
||||
gridbag.setConstraints(button_load,c);
|
||||
c.weightx = 5;
|
||||
c.gridwidth = 5;
|
||||
gridbag.setConstraints(input_line,c);
|
||||
|
||||
button_change.setBackground(colors[current_value]);
|
||||
|
||||
p.add(button_change);
|
||||
p.add(button_run);
|
||||
p.add(button_clear);
|
||||
p.add(button_save);
|
||||
p.add(button_load);
|
||||
p.add(input_line);
|
||||
this.add(p,BorderLayout.SOUTH);
|
||||
|
||||
button_change.addActionListener(new ActionListener()
|
||||
{ public void actionPerformed (ActionEvent e)
|
||||
{ button_change_clicked(); button_change.setBackground(colors[current_value]); }});
|
||||
|
||||
button_run.addActionListener(new ActionListener()
|
||||
{ public void actionPerformed (ActionEvent e)
|
||||
{ button_run_clicked(input_line.getText()); }});
|
||||
|
||||
button_clear.addActionListener(new ActionListener()
|
||||
{ public void actionPerformed (ActionEvent e)
|
||||
{ button_clear_clicked(); }});
|
||||
|
||||
button_save.addActionListener(new ActionListener()
|
||||
{ public void actionPerformed (ActionEvent e)
|
||||
{ button_save_clicked(input_line.getText()); }});
|
||||
|
||||
button_load.addActionListener(new ActionListener()
|
||||
{ public void actionPerformed (ActionEvent e)
|
||||
{ button_load_clicked(); }});
|
||||
|
||||
input_line.addActionListener(new ActionListener()
|
||||
{ public void actionPerformed (ActionEvent e)
|
||||
{ button_run_clicked(input_line.getText()); }});
|
||||
|
||||
this.enableEvents(AWTEvent.MOUSE_EVENT_MASK);
|
||||
}
|
||||
|
||||
void draw_point(point p)
|
||||
{
|
||||
Color c = colors[p.value+3];
|
||||
|
||||
Graphics window_gc = getGraphics();
|
||||
buffer_gc.setColor(c);
|
||||
buffer_gc.fillRect((int)(p.x*XLEN),(int)(p.y*YLEN),4,4);
|
||||
window_gc.setColor(c);
|
||||
window_gc.fillRect((int)(p.x*XLEN),(int)(p.y*YLEN),4,4);
|
||||
}
|
||||
|
||||
void clear_all()
|
||||
{
|
||||
point_list.removeAllElements();
|
||||
if(buffer != null)
|
||||
{
|
||||
buffer_gc.setColor(colors[0]);
|
||||
buffer_gc.fillRect(0,0,XLEN,YLEN);
|
||||
}
|
||||
repaint();
|
||||
}
|
||||
|
||||
void draw_all_points()
|
||||
{
|
||||
int n = point_list.size();
|
||||
for(int i=0;i<n;i++)
|
||||
draw_point(point_list.elementAt(i));
|
||||
}
|
||||
|
||||
void button_change_clicked()
|
||||
{
|
||||
++current_value;
|
||||
if(current_value > 3) current_value = 1;
|
||||
}
|
||||
|
||||
private static double atof(String s)
|
||||
{
|
||||
return Double.valueOf(s).doubleValue();
|
||||
}
|
||||
|
||||
private static int atoi(String s)
|
||||
{
|
||||
return Integer.parseInt(s);
|
||||
}
|
||||
|
||||
void button_run_clicked(String args)
|
||||
{
|
||||
// guard
|
||||
if(point_list.isEmpty()) return;
|
||||
|
||||
svm_parameter param = new svm_parameter();
|
||||
|
||||
// default values
|
||||
param.svm_type = svm_parameter.C_SVC;
|
||||
param.kernel_type = svm_parameter.RBF;
|
||||
param.degree = 3;
|
||||
param.gamma = 0;
|
||||
param.coef0 = 0;
|
||||
param.nu = 0.5;
|
||||
param.cache_size = 40;
|
||||
param.C = 1;
|
||||
param.eps = 1e-3;
|
||||
param.p = 0.1;
|
||||
param.shrinking = 1;
|
||||
param.probability = 0;
|
||||
param.nr_weight = 0;
|
||||
param.weight_label = new int[0];
|
||||
param.weight = new double[0];
|
||||
|
||||
// parse options
|
||||
StringTokenizer st = new StringTokenizer(args);
|
||||
String[] argv = new String[st.countTokens()];
|
||||
for(int i=0;i<argv.length;i++)
|
||||
argv[i] = st.nextToken();
|
||||
|
||||
for(int i=0;i<argv.length;i++)
|
||||
{
|
||||
if(argv[i].charAt(0) != '-') break;
|
||||
if(++i>=argv.length)
|
||||
{
|
||||
System.err.print("unknown option\n");
|
||||
break;
|
||||
}
|
||||
switch(argv[i-1].charAt(1))
|
||||
{
|
||||
case 's':
|
||||
param.svm_type = atoi(argv[i]);
|
||||
break;
|
||||
case 't':
|
||||
param.kernel_type = atoi(argv[i]);
|
||||
break;
|
||||
case 'd':
|
||||
param.degree = atoi(argv[i]);
|
||||
break;
|
||||
case 'g':
|
||||
param.gamma = atof(argv[i]);
|
||||
break;
|
||||
case 'r':
|
||||
param.coef0 = atof(argv[i]);
|
||||
break;
|
||||
case 'n':
|
||||
param.nu = atof(argv[i]);
|
||||
break;
|
||||
case 'm':
|
||||
param.cache_size = atof(argv[i]);
|
||||
break;
|
||||
case 'c':
|
||||
param.C = atof(argv[i]);
|
||||
break;
|
||||
case 'e':
|
||||
param.eps = atof(argv[i]);
|
||||
break;
|
||||
case 'p':
|
||||
param.p = atof(argv[i]);
|
||||
break;
|
||||
case 'h':
|
||||
param.shrinking = atoi(argv[i]);
|
||||
break;
|
||||
case 'b':
|
||||
param.probability = atoi(argv[i]);
|
||||
break;
|
||||
case 'w':
|
||||
++param.nr_weight;
|
||||
{
|
||||
int[] old = param.weight_label;
|
||||
param.weight_label = new int[param.nr_weight];
|
||||
System.arraycopy(old,0,param.weight_label,0,param.nr_weight-1);
|
||||
}
|
||||
|
||||
{
|
||||
double[] old = param.weight;
|
||||
param.weight = new double[param.nr_weight];
|
||||
System.arraycopy(old,0,param.weight,0,param.nr_weight-1);
|
||||
}
|
||||
|
||||
param.weight_label[param.nr_weight-1] = atoi(argv[i-1].substring(2));
|
||||
param.weight[param.nr_weight-1] = atof(argv[i]);
|
||||
break;
|
||||
default:
|
||||
System.err.print("unknown option\n");
|
||||
}
|
||||
}
|
||||
|
||||
// build problem
|
||||
svm_problem prob = new svm_problem();
|
||||
prob.l = point_list.size();
|
||||
prob.y = new double[prob.l];
|
||||
|
||||
if(param.kernel_type == svm_parameter.PRECOMPUTED)
|
||||
{
|
||||
}
|
||||
else if(param.svm_type == svm_parameter.EPSILON_SVR ||
|
||||
param.svm_type == svm_parameter.NU_SVR)
|
||||
{
|
||||
if(param.gamma == 0) param.gamma = 1;
|
||||
prob.x = new svm_node[prob.l][1];
|
||||
for(int i=0;i<prob.l;i++)
|
||||
{
|
||||
point p = point_list.elementAt(i);
|
||||
prob.x[i][0] = new svm_node();
|
||||
prob.x[i][0].index = 1;
|
||||
prob.x[i][0].value = p.x;
|
||||
prob.y[i] = p.y;
|
||||
}
|
||||
|
||||
// build model & classify
|
||||
svm_model model = svm.svm_train(prob, param);
|
||||
svm_node[] x = new svm_node[1];
|
||||
x[0] = new svm_node();
|
||||
x[0].index = 1;
|
||||
int[] j = new int[XLEN];
|
||||
|
||||
Graphics window_gc = getGraphics();
|
||||
for (int i = 0; i < XLEN; i++)
|
||||
{
|
||||
x[0].value = (double) i / XLEN;
|
||||
j[i] = (int)(YLEN*svm.svm_predict(model, x));
|
||||
}
|
||||
|
||||
buffer_gc.setColor(colors[0]);
|
||||
buffer_gc.drawLine(0,0,0,YLEN-1);
|
||||
window_gc.setColor(colors[0]);
|
||||
window_gc.drawLine(0,0,0,YLEN-1);
|
||||
|
||||
int p = (int)(param.p * YLEN);
|
||||
for(int i=1;i<XLEN;i++)
|
||||
{
|
||||
buffer_gc.setColor(colors[0]);
|
||||
buffer_gc.drawLine(i,0,i,YLEN-1);
|
||||
window_gc.setColor(colors[0]);
|
||||
window_gc.drawLine(i,0,i,YLEN-1);
|
||||
|
||||
buffer_gc.setColor(colors[5]);
|
||||
window_gc.setColor(colors[5]);
|
||||
buffer_gc.drawLine(i-1,j[i-1],i,j[i]);
|
||||
window_gc.drawLine(i-1,j[i-1],i,j[i]);
|
||||
|
||||
if(param.svm_type == svm_parameter.EPSILON_SVR)
|
||||
{
|
||||
buffer_gc.setColor(colors[2]);
|
||||
window_gc.setColor(colors[2]);
|
||||
buffer_gc.drawLine(i-1,j[i-1]+p,i,j[i]+p);
|
||||
window_gc.drawLine(i-1,j[i-1]+p,i,j[i]+p);
|
||||
|
||||
buffer_gc.setColor(colors[2]);
|
||||
window_gc.setColor(colors[2]);
|
||||
buffer_gc.drawLine(i-1,j[i-1]-p,i,j[i]-p);
|
||||
window_gc.drawLine(i-1,j[i-1]-p,i,j[i]-p);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if(param.gamma == 0) param.gamma = 0.5;
|
||||
prob.x = new svm_node [prob.l][2];
|
||||
for(int i=0;i<prob.l;i++)
|
||||
{
|
||||
point p = point_list.elementAt(i);
|
||||
prob.x[i][0] = new svm_node();
|
||||
prob.x[i][0].index = 1;
|
||||
prob.x[i][0].value = p.x;
|
||||
prob.x[i][1] = new svm_node();
|
||||
prob.x[i][1].index = 2;
|
||||
prob.x[i][1].value = p.y;
|
||||
prob.y[i] = p.value;
|
||||
}
|
||||
|
||||
// build model & classify
|
||||
svm_model model = svm.svm_train(prob, param);
|
||||
svm_node[] x = new svm_node[2];
|
||||
x[0] = new svm_node();
|
||||
x[1] = new svm_node();
|
||||
x[0].index = 1;
|
||||
x[1].index = 2;
|
||||
|
||||
Graphics window_gc = getGraphics();
|
||||
for (int i = 0; i < XLEN; i++)
|
||||
for (int j = 0; j < YLEN ; j++) {
|
||||
x[0].value = (double) i / XLEN;
|
||||
x[1].value = (double) j / YLEN;
|
||||
double d = svm.svm_predict(model, x);
|
||||
if (param.svm_type == svm_parameter.ONE_CLASS && d<0) d=2;
|
||||
buffer_gc.setColor(colors[(int)d]);
|
||||
window_gc.setColor(colors[(int)d]);
|
||||
buffer_gc.drawLine(i,j,i,j);
|
||||
window_gc.drawLine(i,j,i,j);
|
||||
}
|
||||
}
|
||||
|
||||
draw_all_points();
|
||||
}
|
||||
|
||||
void button_clear_clicked()
|
||||
{
|
||||
clear_all();
|
||||
}
|
||||
|
||||
void button_save_clicked(String args)
|
||||
{
|
||||
FileDialog dialog = new FileDialog(new Frame(),"Save",FileDialog.SAVE);
|
||||
dialog.setVisible(true);
|
||||
String filename = dialog.getDirectory() + dialog.getFile();
|
||||
if (filename == null) return;
|
||||
try {
|
||||
DataOutputStream fp = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(filename)));
|
||||
|
||||
int svm_type = svm_parameter.C_SVC;
|
||||
int svm_type_idx = args.indexOf("-s ");
|
||||
if(svm_type_idx != -1)
|
||||
{
|
||||
StringTokenizer svm_str_st = new StringTokenizer(args.substring(svm_type_idx+2).trim());
|
||||
svm_type = atoi(svm_str_st.nextToken());
|
||||
}
|
||||
|
||||
int n = point_list.size();
|
||||
if(svm_type == svm_parameter.EPSILON_SVR || svm_type == svm_parameter.NU_SVR)
|
||||
{
|
||||
for(int i=0;i<n;i++)
|
||||
{
|
||||
point p = point_list.elementAt(i);
|
||||
fp.writeBytes(p.y+" 1:"+p.x+"\n");
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(int i=0;i<n;i++)
|
||||
{
|
||||
point p = point_list.elementAt(i);
|
||||
fp.writeBytes(p.value+" 1:"+p.x+" 2:"+p.y+"\n");
|
||||
}
|
||||
}
|
||||
fp.close();
|
||||
} catch (IOException e) { System.err.print(e); }
|
||||
}
|
||||
|
||||
void button_load_clicked()
|
||||
{
|
||||
FileDialog dialog = new FileDialog(new Frame(),"Load",FileDialog.LOAD);
|
||||
dialog.setVisible(true);
|
||||
String filename = dialog.getDirectory() + dialog.getFile();
|
||||
if (filename == null) return;
|
||||
clear_all();
|
||||
try {
|
||||
BufferedReader fp = new BufferedReader(new FileReader(filename));
|
||||
String line;
|
||||
while((line = fp.readLine()) != null)
|
||||
{
|
||||
StringTokenizer st = new StringTokenizer(line," \t\n\r\f:");
|
||||
if(st.countTokens() == 5)
|
||||
{
|
||||
byte value = (byte)atoi(st.nextToken());
|
||||
st.nextToken();
|
||||
double x = atof(st.nextToken());
|
||||
st.nextToken();
|
||||
double y = atof(st.nextToken());
|
||||
point_list.addElement(new point(x,y,value));
|
||||
}
|
||||
else if(st.countTokens() == 3)
|
||||
{
|
||||
double y = atof(st.nextToken());
|
||||
st.nextToken();
|
||||
double x = atof(st.nextToken());
|
||||
point_list.addElement(new point(x,y,current_value));
|
||||
}else
|
||||
break;
|
||||
}
|
||||
fp.close();
|
||||
} catch (IOException e) { System.err.print(e); }
|
||||
draw_all_points();
|
||||
}
|
||||
|
||||
protected void processMouseEvent(MouseEvent e)
|
||||
{
|
||||
if(e.getID() == MouseEvent.MOUSE_PRESSED)
|
||||
{
|
||||
if(e.getX() >= XLEN || e.getY() >= YLEN) return;
|
||||
point p = new point((double)e.getX()/XLEN,
|
||||
(double)e.getY()/YLEN,
|
||||
current_value);
|
||||
point_list.addElement(p);
|
||||
draw_point(p);
|
||||
}
|
||||
}
|
||||
|
||||
public void paint(Graphics g)
|
||||
{
|
||||
// create buffer first time
|
||||
if(buffer == null) {
|
||||
buffer = this.createImage(XLEN,YLEN);
|
||||
buffer_gc = buffer.getGraphics();
|
||||
buffer_gc.setColor(colors[0]);
|
||||
buffer_gc.fillRect(0,0,XLEN,YLEN);
|
||||
}
|
||||
g.drawImage(buffer,0,0,this);
|
||||
}
|
||||
}
|
318
libsvm-3.36/java/svm_train.java
Normal file
318
libsvm-3.36/java/svm_train.java
Normal file
@@ -0,0 +1,318 @@
|
||||
import libsvm.*;
|
||||
import java.io.*;
|
||||
import java.util.*;
|
||||
|
||||
class svm_train {
|
||||
private svm_parameter param; // set by parse_command_line
|
||||
private svm_problem prob; // set by read_problem
|
||||
private svm_model model;
|
||||
private String input_file_name; // set by parse_command_line
|
||||
private String model_file_name; // set by parse_command_line
|
||||
private String error_msg;
|
||||
private int cross_validation;
|
||||
private int nr_fold;
|
||||
|
||||
private static svm_print_interface svm_print_null = new svm_print_interface()
|
||||
{
|
||||
public void print(String s) {}
|
||||
};
|
||||
|
||||
private static void exit_with_help()
|
||||
{
|
||||
System.out.print(
|
||||
"Usage: svm_train [options] training_set_file [model_file]\n"
|
||||
+"options:\n"
|
||||
+"-s svm_type : set type of SVM (default 0)\n"
|
||||
+" 0 -- C-SVC (multi-class classification)\n"
|
||||
+" 1 -- nu-SVC (multi-class classification)\n"
|
||||
+" 2 -- one-class SVM\n"
|
||||
+" 3 -- epsilon-SVR (regression)\n"
|
||||
+" 4 -- nu-SVR (regression)\n"
|
||||
+"-t kernel_type : set type of kernel function (default 2)\n"
|
||||
+" 0 -- linear: u'*v\n"
|
||||
+" 1 -- polynomial: (gamma*u'*v + coef0)^degree\n"
|
||||
+" 2 -- radial basis function: exp(-gamma*|u-v|^2)\n"
|
||||
+" 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n"
|
||||
+" 4 -- precomputed kernel (kernel values in training_set_file)\n"
|
||||
+"-d degree : set degree in kernel function (default 3)\n"
|
||||
+"-g gamma : set gamma in kernel function (default 1/num_features)\n"
|
||||
+"-r coef0 : set coef0 in kernel function (default 0)\n"
|
||||
+"-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n"
|
||||
+"-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n"
|
||||
+"-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n"
|
||||
+"-m cachesize : set cache memory size in MB (default 100)\n"
|
||||
+"-e epsilon : set tolerance of termination criterion (default 0.001)\n"
|
||||
+"-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)\n"
|
||||
+"-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n"
|
||||
+"-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)\n"
|
||||
+"-v n : n-fold cross validation mode\n"
|
||||
+"-q : quiet mode (no outputs)\n"
|
||||
);
|
||||
System.exit(1);
|
||||
}
|
||||
|
||||
private void do_cross_validation()
|
||||
{
|
||||
int i;
|
||||
int total_correct = 0;
|
||||
double total_error = 0;
|
||||
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
|
||||
double[] target = new double[prob.l];
|
||||
|
||||
svm.svm_cross_validation(prob,param,nr_fold,target);
|
||||
if(param.svm_type == svm_parameter.EPSILON_SVR ||
|
||||
param.svm_type == svm_parameter.NU_SVR)
|
||||
{
|
||||
for(i=0;i<prob.l;i++)
|
||||
{
|
||||
double y = prob.y[i];
|
||||
double v = target[i];
|
||||
total_error += (v-y)*(v-y);
|
||||
sumv += v;
|
||||
sumy += y;
|
||||
sumvv += v*v;
|
||||
sumyy += y*y;
|
||||
sumvy += v*y;
|
||||
}
|
||||
System.out.print("Cross Validation Mean squared error = "+total_error/prob.l+"\n");
|
||||
System.out.print("Cross Validation Squared correlation coefficient = "+
|
||||
((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/
|
||||
((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))+"\n"
|
||||
);
|
||||
}
|
||||
else
|
||||
{
|
||||
for(i=0;i<prob.l;i++)
|
||||
if(target[i] == prob.y[i])
|
||||
++total_correct;
|
||||
System.out.print("Cross Validation Accuracy = "+100.0*total_correct/prob.l+"%\n");
|
||||
}
|
||||
}
|
||||
|
||||
private void run(String argv[]) throws IOException
|
||||
{
|
||||
parse_command_line(argv);
|
||||
read_problem();
|
||||
error_msg = svm.svm_check_parameter(prob,param);
|
||||
|
||||
if(error_msg != null)
|
||||
{
|
||||
System.err.print("ERROR: "+error_msg+"\n");
|
||||
System.exit(1);
|
||||
}
|
||||
|
||||
if(cross_validation != 0)
|
||||
{
|
||||
do_cross_validation();
|
||||
}
|
||||
else
|
||||
{
|
||||
model = svm.svm_train(prob,param);
|
||||
svm.svm_save_model(model_file_name,model);
|
||||
}
|
||||
}
|
||||
|
||||
public static void main(String argv[]) throws IOException
|
||||
{
|
||||
svm_train t = new svm_train();
|
||||
t.run(argv);
|
||||
}
|
||||
|
||||
private static double atof(String s)
|
||||
{
|
||||
double d = Double.valueOf(s).doubleValue();
|
||||
if (Double.isNaN(d) || Double.isInfinite(d))
|
||||
{
|
||||
System.err.print("NaN or Infinity in input\n");
|
||||
System.exit(1);
|
||||
}
|
||||
return(d);
|
||||
}
|
||||
|
||||
private static int atoi(String s)
|
||||
{
|
||||
return Integer.parseInt(s);
|
||||
}
|
||||
|
||||
private void parse_command_line(String argv[])
|
||||
{
|
||||
int i;
|
||||
svm_print_interface print_func = null; // default printing to stdout
|
||||
|
||||
param = new svm_parameter();
|
||||
// default values
|
||||
param.svm_type = svm_parameter.C_SVC;
|
||||
param.kernel_type = svm_parameter.RBF;
|
||||
param.degree = 3;
|
||||
param.gamma = 0; // 1/num_features
|
||||
param.coef0 = 0;
|
||||
param.nu = 0.5;
|
||||
param.cache_size = 100;
|
||||
param.C = 1;
|
||||
param.eps = 1e-3;
|
||||
param.p = 0.1;
|
||||
param.shrinking = 1;
|
||||
param.probability = 0;
|
||||
param.nr_weight = 0;
|
||||
param.weight_label = new int[0];
|
||||
param.weight = new double[0];
|
||||
cross_validation = 0;
|
||||
|
||||
// parse options
|
||||
for(i=0;i<argv.length;i++)
|
||||
{
|
||||
if(argv[i].charAt(0) != '-') break;
|
||||
if(++i>=argv.length)
|
||||
exit_with_help();
|
||||
switch(argv[i-1].charAt(1))
|
||||
{
|
||||
case 's':
|
||||
param.svm_type = atoi(argv[i]);
|
||||
break;
|
||||
case 't':
|
||||
param.kernel_type = atoi(argv[i]);
|
||||
break;
|
||||
case 'd':
|
||||
param.degree = atoi(argv[i]);
|
||||
break;
|
||||
case 'g':
|
||||
param.gamma = atof(argv[i]);
|
||||
break;
|
||||
case 'r':
|
||||
param.coef0 = atof(argv[i]);
|
||||
break;
|
||||
case 'n':
|
||||
param.nu = atof(argv[i]);
|
||||
break;
|
||||
case 'm':
|
||||
param.cache_size = atof(argv[i]);
|
||||
break;
|
||||
case 'c':
|
||||
param.C = atof(argv[i]);
|
||||
break;
|
||||
case 'e':
|
||||
param.eps = atof(argv[i]);
|
||||
break;
|
||||
case 'p':
|
||||
param.p = atof(argv[i]);
|
||||
break;
|
||||
case 'h':
|
||||
param.shrinking = atoi(argv[i]);
|
||||
break;
|
||||
case 'b':
|
||||
param.probability = atoi(argv[i]);
|
||||
break;
|
||||
case 'q':
|
||||
print_func = svm_print_null;
|
||||
i--;
|
||||
break;
|
||||
case 'v':
|
||||
cross_validation = 1;
|
||||
nr_fold = atoi(argv[i]);
|
||||
if(nr_fold < 2)
|
||||
{
|
||||
System.err.print("n-fold cross validation: n must >= 2\n");
|
||||
exit_with_help();
|
||||
}
|
||||
break;
|
||||
case 'w':
|
||||
++param.nr_weight;
|
||||
{
|
||||
int[] old = param.weight_label;
|
||||
param.weight_label = new int[param.nr_weight];
|
||||
System.arraycopy(old,0,param.weight_label,0,param.nr_weight-1);
|
||||
}
|
||||
|
||||
{
|
||||
double[] old = param.weight;
|
||||
param.weight = new double[param.nr_weight];
|
||||
System.arraycopy(old,0,param.weight,0,param.nr_weight-1);
|
||||
}
|
||||
|
||||
param.weight_label[param.nr_weight-1] = atoi(argv[i-1].substring(2));
|
||||
param.weight[param.nr_weight-1] = atof(argv[i]);
|
||||
break;
|
||||
default:
|
||||
System.err.print("Unknown option: " + argv[i-1] + "\n");
|
||||
exit_with_help();
|
||||
}
|
||||
}
|
||||
|
||||
svm.svm_set_print_string_function(print_func);
|
||||
|
||||
// determine filenames
|
||||
|
||||
if(i>=argv.length)
|
||||
exit_with_help();
|
||||
|
||||
input_file_name = argv[i];
|
||||
|
||||
if(i<argv.length-1)
|
||||
model_file_name = argv[i+1];
|
||||
else
|
||||
{
|
||||
int p = argv[i].lastIndexOf('/');
|
||||
++p; // whew...
|
||||
model_file_name = argv[i].substring(p)+".model";
|
||||
}
|
||||
}
|
||||
|
||||
// read in a problem (in svmlight format)
|
||||
|
||||
private void read_problem() throws IOException
|
||||
{
|
||||
BufferedReader fp = new BufferedReader(new FileReader(input_file_name));
|
||||
Vector<Double> vy = new Vector<Double>();
|
||||
Vector<svm_node[]> vx = new Vector<svm_node[]>();
|
||||
int max_index = 0;
|
||||
|
||||
while(true)
|
||||
{
|
||||
String line = fp.readLine();
|
||||
if(line == null) break;
|
||||
|
||||
StringTokenizer st = new StringTokenizer(line," \t\n\r\f:");
|
||||
|
||||
vy.addElement(atof(st.nextToken()));
|
||||
int m = st.countTokens()/2;
|
||||
svm_node[] x = new svm_node[m];
|
||||
for(int j=0;j<m;j++)
|
||||
{
|
||||
x[j] = new svm_node();
|
||||
x[j].index = atoi(st.nextToken());
|
||||
x[j].value = atof(st.nextToken());
|
||||
}
|
||||
if(m>0) max_index = Math.max(max_index, x[m-1].index);
|
||||
vx.addElement(x);
|
||||
}
|
||||
|
||||
prob = new svm_problem();
|
||||
prob.l = vy.size();
|
||||
prob.x = new svm_node[prob.l][];
|
||||
for(int i=0;i<prob.l;i++)
|
||||
prob.x[i] = vx.elementAt(i);
|
||||
prob.y = new double[prob.l];
|
||||
for(int i=0;i<prob.l;i++)
|
||||
prob.y[i] = vy.elementAt(i);
|
||||
|
||||
if(param.gamma == 0 && max_index > 0)
|
||||
param.gamma = 1.0/max_index;
|
||||
|
||||
if(param.kernel_type == svm_parameter.PRECOMPUTED)
|
||||
for(int i=0;i<prob.l;i++)
|
||||
{
|
||||
if (prob.x[i][0].index != 0)
|
||||
{
|
||||
System.err.print("Wrong kernel matrix: first column must be 0:sample_serial_number\n");
|
||||
System.exit(1);
|
||||
}
|
||||
if ((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > max_index)
|
||||
{
|
||||
System.err.print("Wrong input format: sample_serial_number out of range\n");
|
||||
System.exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
fp.close();
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user