26 KiB
26 KiB
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
</head>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt MIT */
var searchBox = new SearchBox("searchBox", "search/",'.html');
/* @license-end */
</script>
<script type="text/javascript" src="menudata.js"></script>
<script type="text/javascript" src="menu.js"></script>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt MIT */
$(function() {
initMenu('',true,false,'search.php','Search');
$(document).ready(function() { init_search(); });
});
/* @license-end */
</script>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt MIT */
$(document).ready(function() { init_codefold(0); });
/* @license-end */
</script>
Generated on Sun Jun 22 2025 11:25:27 for SVM Classifier C++ by
1.9.8
</html>
SVM Classifier C++ 1.0.0
High-performance Support Vector Machine classifier with scikit-learn compatible API
|
Loading...
Searching...
No Matches
kernel_parameters.hpp
192 void validate_tensor_properties(const torch::Tensor& tensor, int expected_dims, const std::string& name);
int get_n_samples() const
Get number of samples from last conversion.
Definition kernel_parameters.hpp:106
svm_node * to_svm_node(const torch::Tensor &sample)
Convert single sample to libsvm format.
int get_n_features() const
Get number of features from last conversion.
Definition kernel_parameters.hpp:100
torch::Tensor from_decision_values(const std::vector< std::vector< double > > &decision_values)
Convert decision values back to PyTorch tensor.
torch::Tensor from_probabilities(const std::vector< std::vector< double > > &probabilities)
Convert probabilities back to PyTorch tensor.
std::unique_ptr< svm_problem > to_svm_problem(const torch::Tensor &X, const torch::Tensor &y=torch::Tensor())
Convert PyTorch tensors to libsvm format.
feature_node * to_feature_node(const torch::Tensor &sample)
Convert single sample to liblinear format.
std::unique_ptr< problem > to_linear_problem(const torch::Tensor &X, const torch::Tensor &y=torch::Tensor())
Convert PyTorch tensors to liblinear format.
void set_sparse_threshold(double threshold)
Set sparse threshold (features with absolute value below this are ignored)
Definition kernel_parameters.hpp:117
void validate_tensors(const torch::Tensor &X, const torch::Tensor &y=torch::Tensor())
Validate input tensors.
torch::Tensor from_predictions(const std::vector< double > &predictions)
Convert predictions back to PyTorch tensor.
~DataConverter()
Destructor - cleans up allocated memory.
Generated on Sun Jun 22 2025 11:25:27 for SVM Classifier C++ by