library comile complete and begin tests
Some checks failed
CI/CD Pipeline / Create Release Package (push) Has been cancelled
CI/CD Pipeline / Code Linting (push) Has been cancelled
CI/CD Pipeline / Build and Test (Debug, clang, ubuntu-latest) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Debug, gcc, ubuntu-latest) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Release, clang, ubuntu-20.04) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Release, clang, ubuntu-latest) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Release, gcc, ubuntu-20.04) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Release, gcc, ubuntu-latest) (push) Has been cancelled
CI/CD Pipeline / Docker Build Test (push) Has been cancelled
CI/CD Pipeline / Performance Benchmarks (push) Has been cancelled
CI/CD Pipeline / Build Documentation (push) Has been cancelled
Some checks failed
CI/CD Pipeline / Create Release Package (push) Has been cancelled
CI/CD Pipeline / Code Linting (push) Has been cancelled
CI/CD Pipeline / Build and Test (Debug, clang, ubuntu-latest) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Debug, gcc, ubuntu-latest) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Release, clang, ubuntu-20.04) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Release, clang, ubuntu-latest) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Release, gcc, ubuntu-20.04) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Release, gcc, ubuntu-latest) (push) Has been cancelled
CI/CD Pipeline / Docker Build Test (push) Has been cancelled
CI/CD Pipeline / Performance Benchmarks (push) Has been cancelled
CI/CD Pipeline / Build Documentation (push) Has been cancelled
This commit is contained in:
@@ -6,6 +6,7 @@
|
||||
#include <unordered_set>
|
||||
#include <chrono>
|
||||
#include <cmath>
|
||||
#include <numeric> // for std::accumulate
|
||||
|
||||
namespace svm_classifier {
|
||||
|
||||
@@ -31,11 +32,11 @@ namespace svm_classifier {
|
||||
|
||||
// Store parameters and determine library type
|
||||
params_ = params;
|
||||
library_type_ = get_svm_library(params.get_kernel_type());
|
||||
library_type_ = ::svm_classifier::get_svm_library(params.get_kernel_type());
|
||||
|
||||
// Extract unique classes
|
||||
auto y_cpu = y.to(torch::kCPU);
|
||||
auto unique_classes_tensor = torch::unique(y_cpu);
|
||||
auto unique_classes_tensor = std::get<0>(at::_unique(y_cpu));
|
||||
classes_.clear();
|
||||
|
||||
for (int i = 0; i < unique_classes_tensor.size(0); ++i) {
|
||||
@@ -347,14 +348,16 @@ namespace svm_classifier {
|
||||
{
|
||||
for (auto& model : svm_models_) {
|
||||
if (model) {
|
||||
svm_free_and_destroy_model(&model);
|
||||
auto raw_model = model.release();
|
||||
svm_free_and_destroy_model(&raw_model);
|
||||
}
|
||||
}
|
||||
svm_models_.clear();
|
||||
|
||||
for (auto& model : linear_models_) {
|
||||
if (model) {
|
||||
free_and_destroy_model(&model);
|
||||
auto raw_model = model.release();
|
||||
free_and_destroy_model(&raw_model);
|
||||
}
|
||||
}
|
||||
linear_models_.clear();
|
||||
@@ -384,11 +387,11 @@ namespace svm_classifier {
|
||||
|
||||
// Store parameters and determine library type
|
||||
params_ = params;
|
||||
library_type_ = get_svm_library(params.get_kernel_type());
|
||||
library_type_ = ::svm_classifier::get_svm_library(params.get_kernel_type());
|
||||
|
||||
// Extract unique classes
|
||||
auto y_cpu = y.to(torch::kCPU);
|
||||
auto unique_classes_tensor = torch::unique(y_cpu);
|
||||
auto unique_classes_tensor = std::get<0>(at::_unique(y_cpu));
|
||||
classes_.clear();
|
||||
|
||||
for (int i = 0; i < unique_classes_tensor.size(0); ++i) {
|
||||
@@ -492,4 +495,231 @@ namespace svm_classifier {
|
||||
return probabilities;
|
||||
}
|
||||
|
||||
std::vector<std::vector<double>> OneVsOneStrategy::decision_function(const torch::Tensor& X,
|
||||
std::vector<std::vector<double>> OneVsOneStrategy::decision_function(const torch::Tensor& X,
|
||||
DataConverter& converter)
|
||||
{
|
||||
if (!is_trained_) {
|
||||
throw std::runtime_error("Model is not trained");
|
||||
}
|
||||
|
||||
std::vector<std::vector<double>> decision_values;
|
||||
decision_values.reserve(X.size(0));
|
||||
|
||||
for (int i = 0; i < X.size(0); ++i) {
|
||||
auto sample = X[i];
|
||||
std::vector<double> sample_decisions;
|
||||
sample_decisions.reserve(class_pairs_.size());
|
||||
|
||||
for (size_t j = 0; j < class_pairs_.size(); ++j) {
|
||||
if (library_type_ == SVMLibrary::LIBSVM && svm_models_[j]) {
|
||||
auto sample_node = converter.to_svm_node(sample);
|
||||
double decision_value;
|
||||
svm_predict_values(svm_models_[j].get(), sample_node, &decision_value);
|
||||
sample_decisions.push_back(decision_value);
|
||||
} else if (library_type_ == SVMLibrary::LIBLINEAR && linear_models_[j]) {
|
||||
auto sample_node = converter.to_feature_node(sample);
|
||||
double decision_value;
|
||||
predict_values(linear_models_[j].get(), sample_node, &decision_value);
|
||||
sample_decisions.push_back(decision_value);
|
||||
} else {
|
||||
sample_decisions.push_back(0.0);
|
||||
}
|
||||
}
|
||||
|
||||
decision_values.push_back(sample_decisions);
|
||||
}
|
||||
|
||||
return decision_values;
|
||||
}
|
||||
|
||||
bool OneVsOneStrategy::supports_probability() const
|
||||
{
|
||||
return params_.get_probability();
|
||||
}
|
||||
|
||||
std::pair<torch::Tensor, torch::Tensor> OneVsOneStrategy::extract_binary_data(const torch::Tensor& X,
|
||||
const torch::Tensor& y,
|
||||
int class1,
|
||||
int class2)
|
||||
{
|
||||
auto mask = (y == class1) | (y == class2);
|
||||
auto filtered_X = X.index_select(0, torch::nonzero(mask).squeeze());
|
||||
auto filtered_y = y.index_select(0, torch::nonzero(mask).squeeze());
|
||||
|
||||
// Convert to binary labels: class1 -> +1, class2 -> -1
|
||||
auto binary_y = torch::where(filtered_y == class1, torch::ones_like(filtered_y), torch::full_like(filtered_y, -1));
|
||||
|
||||
return std::make_pair(filtered_X, binary_y);
|
||||
}
|
||||
|
||||
double OneVsOneStrategy::train_pairwise_classifier(const torch::Tensor& X,
|
||||
const torch::Tensor& y,
|
||||
int class1,
|
||||
int class2,
|
||||
const KernelParameters& params,
|
||||
DataConverter& converter,
|
||||
int model_idx)
|
||||
{
|
||||
auto start_time = std::chrono::high_resolution_clock::now();
|
||||
|
||||
auto [filtered_X, binary_y] = extract_binary_data(X, y, class1, class2);
|
||||
|
||||
if (library_type_ == SVMLibrary::LIBSVM) {
|
||||
// Use libsvm
|
||||
auto problem = converter.to_svm_problem(filtered_X, binary_y);
|
||||
|
||||
// Setup SVM parameters (similar to OneVsRest)
|
||||
svm_parameter svm_params;
|
||||
svm_params.svm_type = C_SVC;
|
||||
|
||||
switch (params.get_kernel_type()) {
|
||||
case KernelType::RBF:
|
||||
svm_params.kernel_type = RBF;
|
||||
break;
|
||||
case KernelType::POLYNOMIAL:
|
||||
svm_params.kernel_type = POLY;
|
||||
break;
|
||||
case KernelType::SIGMOID:
|
||||
svm_params.kernel_type = SIGMOID;
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error("Invalid kernel type for libsvm");
|
||||
}
|
||||
|
||||
svm_params.degree = params.get_degree();
|
||||
svm_params.gamma = (params.get_gamma() == -1.0) ? 1.0 / filtered_X.size(1) : params.get_gamma();
|
||||
svm_params.coef0 = params.get_coef0();
|
||||
svm_params.cache_size = params.get_cache_size();
|
||||
svm_params.eps = params.get_tolerance();
|
||||
svm_params.C = params.get_C();
|
||||
svm_params.nr_weight = 0;
|
||||
svm_params.weight_label = nullptr;
|
||||
svm_params.weight = nullptr;
|
||||
svm_params.nu = 0.5;
|
||||
svm_params.p = 0.1;
|
||||
svm_params.shrinking = 1;
|
||||
svm_params.probability = params.get_probability() ? 1 : 0;
|
||||
|
||||
// Check parameters
|
||||
const char* error_msg = svm_check_parameter(problem.get(), &svm_params);
|
||||
if (error_msg) {
|
||||
throw std::runtime_error("SVM parameter error: " + std::string(error_msg));
|
||||
}
|
||||
|
||||
// Train model
|
||||
auto model = svm_train(problem.get(), &svm_params);
|
||||
if (!model) {
|
||||
throw std::runtime_error("Failed to train SVM model");
|
||||
}
|
||||
|
||||
svm_models_[model_idx] = std::unique_ptr<svm_model>(model);
|
||||
} else {
|
||||
// Use liblinear
|
||||
auto problem = converter.to_linear_problem(filtered_X, binary_y);
|
||||
|
||||
// Setup linear parameters
|
||||
parameter linear_params;
|
||||
linear_params.solver_type = L2R_L2LOSS_SVC_DUAL;
|
||||
linear_params.C = params.get_C();
|
||||
linear_params.eps = params.get_tolerance();
|
||||
linear_params.nr_weight = 0;
|
||||
linear_params.weight_label = nullptr;
|
||||
linear_params.weight = nullptr;
|
||||
linear_params.p = 0.1;
|
||||
linear_params.nu = 0.5;
|
||||
linear_params.init_sol = nullptr;
|
||||
linear_params.regularize_bias = 0;
|
||||
|
||||
// Check parameters
|
||||
const char* error_msg = check_parameter(problem.get(), &linear_params);
|
||||
if (error_msg) {
|
||||
throw std::runtime_error("Linear parameter error: " + std::string(error_msg));
|
||||
}
|
||||
|
||||
// Train model
|
||||
auto model = train(problem.get(), &linear_params);
|
||||
if (!model) {
|
||||
throw std::runtime_error("Failed to train linear model");
|
||||
}
|
||||
|
||||
linear_models_[model_idx] = std::unique_ptr<::model>(model);
|
||||
}
|
||||
|
||||
auto end_time = std::chrono::high_resolution_clock::now();
|
||||
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end_time - start_time);
|
||||
|
||||
return duration.count() / 1000.0;
|
||||
}
|
||||
|
||||
std::vector<int> OneVsOneStrategy::vote_predictions(const std::vector<std::vector<double>>& decisions)
|
||||
{
|
||||
std::vector<int> predictions;
|
||||
predictions.reserve(decisions.size());
|
||||
|
||||
for (const auto& decision_row : decisions) {
|
||||
std::vector<int> votes(classes_.size(), 0);
|
||||
|
||||
// Count votes from pairwise decisions
|
||||
for (size_t i = 0; i < class_pairs_.size(); ++i) {
|
||||
auto [class1, class2] = class_pairs_[i];
|
||||
double decision = decision_row[i];
|
||||
|
||||
auto it1 = std::find(classes_.begin(), classes_.end(), class1);
|
||||
auto it2 = std::find(classes_.begin(), classes_.end(), class2);
|
||||
|
||||
if (it1 != classes_.end() && it2 != classes_.end()) {
|
||||
size_t idx1 = std::distance(classes_.begin(), it1);
|
||||
size_t idx2 = std::distance(classes_.begin(), it2);
|
||||
|
||||
if (decision > 0) {
|
||||
votes[idx1]++;
|
||||
} else {
|
||||
votes[idx2]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find class with most votes
|
||||
auto max_it = std::max_element(votes.begin(), votes.end());
|
||||
int predicted_class_idx = std::distance(votes.begin(), max_it);
|
||||
predictions.push_back(classes_[predicted_class_idx]);
|
||||
}
|
||||
|
||||
return predictions;
|
||||
}
|
||||
|
||||
void OneVsOneStrategy::cleanup_models()
|
||||
{
|
||||
for (auto& model : svm_models_) {
|
||||
if (model) {
|
||||
auto raw_model = model.release();
|
||||
svm_free_and_destroy_model(&raw_model);
|
||||
}
|
||||
}
|
||||
svm_models_.clear();
|
||||
|
||||
for (auto& model : linear_models_) {
|
||||
if (model) {
|
||||
auto raw_model = model.release();
|
||||
free_and_destroy_model(&raw_model);
|
||||
}
|
||||
}
|
||||
linear_models_.clear();
|
||||
|
||||
is_trained_ = false;
|
||||
}
|
||||
|
||||
// Factory function
|
||||
std::unique_ptr<MulticlassStrategyBase> create_multiclass_strategy(MulticlassStrategy strategy)
|
||||
{
|
||||
switch (strategy) {
|
||||
case MulticlassStrategy::ONE_VS_REST:
|
||||
return std::make_unique<OneVsRestStrategy>();
|
||||
case MulticlassStrategy::ONE_VS_ONE:
|
||||
return std::make_unique<OneVsOneStrategy>();
|
||||
default:
|
||||
throw std::invalid_argument("Unknown multiclass strategy");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace svm_classifier
|
Reference in New Issue
Block a user