library comile complete and begin tests
Some checks failed
CI/CD Pipeline / Create Release Package (push) Has been cancelled
CI/CD Pipeline / Code Linting (push) Has been cancelled
CI/CD Pipeline / Build and Test (Debug, clang, ubuntu-latest) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Debug, gcc, ubuntu-latest) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Release, clang, ubuntu-20.04) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Release, clang, ubuntu-latest) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Release, gcc, ubuntu-20.04) (push) Has been cancelled
CI/CD Pipeline / Build and Test (Release, gcc, ubuntu-latest) (push) Has been cancelled
CI/CD Pipeline / Docker Build Test (push) Has been cancelled
CI/CD Pipeline / Performance Benchmarks (push) Has been cancelled
CI/CD Pipeline / Build Documentation (push) Has been cancelled

This commit is contained in:
2025-06-23 12:05:35 +02:00
parent e07eb4d2ed
commit 7b27d5c1f3
9 changed files with 361 additions and 172 deletions

View File

@@ -1,195 +1,117 @@
#pragma once
#include "types.hpp"
#include <torch/torch.h>
#include <vector>
#include <memory>
// Forward declarations for libsvm and liblinear structures
struct svm_node;
struct svm_problem;
struct feature_node;
struct problem;
#include <nlohmann/json.hpp>
namespace svm_classifier {
/**
* @brief Data converter between libtorch tensors and SVM library formats
* @brief Kernel parameters configuration class
*
* This class handles the conversion between PyTorch tensors and the data structures
* required by libsvm and liblinear libraries. It manages memory allocation and
* provides efficient conversion methods.
* This class manages all parameters for SVM kernels including kernel type,
* regularization parameters, optimization settings, and kernel-specific parameters.
*/
class DataConverter {
class KernelParameters {
public:
/**
* @brief Default constructor
* @brief Default constructor with default parameters
*/
DataConverter();
KernelParameters();
/**
* @brief Destructor - cleans up allocated memory
* @brief Constructor with JSON configuration
* @param config JSON configuration object
*/
~DataConverter();
explicit KernelParameters(const nlohmann::json& config);
/**
* @brief Convert PyTorch tensors to libsvm format
* @param X Feature tensor of shape (n_samples, n_features)
* @param y Target tensor of shape (n_samples,) - optional for prediction
* @return Pointer to svm_problem structure
* @brief Set parameters from JSON configuration
* @param config JSON configuration object
* @throws std::invalid_argument if parameters are invalid
*/
std::unique_ptr<svm_problem> to_svm_problem(const torch::Tensor& X,
const torch::Tensor& y = torch::Tensor());
void set_parameters(const nlohmann::json& config);
/**
* @brief Convert PyTorch tensors to liblinear format
* @param X Feature tensor of shape (n_samples, n_features)
* @param y Target tensor of shape (n_samples,) - optional for prediction
* @return Pointer to problem structure
* @brief Get current parameters as JSON
* @return JSON object with current parameters
*/
std::unique_ptr<problem> to_linear_problem(const torch::Tensor& X,
const torch::Tensor& y = torch::Tensor());
nlohmann::json get_parameters() const;
// Kernel type
void set_kernel_type(KernelType kernel);
KernelType get_kernel_type() const { return kernel_type_; }
// Multiclass strategy
void set_multiclass_strategy(MulticlassStrategy strategy);
MulticlassStrategy get_multiclass_strategy() const { return multiclass_strategy_; }
// Common parameters
void set_C(double c);
double get_C() const { return C_; }
void set_tolerance(double tol);
double get_tolerance() const { return tolerance_; }
void set_max_iterations(int max_iter);
int get_max_iterations() const { return max_iterations_; }
void set_probability(bool probability);
bool get_probability() const { return probability_; }
void set_cache_size(double cache_size);
double get_cache_size() const { return cache_size_; }
// Kernel-specific parameters
void set_gamma(double gamma);
double get_gamma() const { return gamma_; }
bool is_gamma_auto() const { return gamma_ == -1.0; }
void set_gamma_auto();
void set_degree(int degree);
int get_degree() const { return degree_; }
void set_coef0(double coef0);
double get_coef0() const { return coef0_; }
/**
* @brief Convert single sample to libsvm format
* @param sample Feature tensor of shape (n_features,)
* @return Pointer to svm_node array
* @brief Validate all parameters for consistency
* @throws std::invalid_argument if parameters are invalid
*/
svm_node* to_svm_node(const torch::Tensor& sample);
void validate() const;
/**
* @brief Convert single sample to liblinear format
* @param sample Feature tensor of shape (n_features,)
* @return Pointer to feature_node array
* @brief Get default parameters for a specific kernel type
* @param kernel Kernel type
* @return JSON object with default parameters
*/
feature_node* to_feature_node(const torch::Tensor& sample);
static nlohmann::json get_default_parameters(KernelType kernel);
/**
* @brief Convert predictions back to PyTorch tensor
* @param predictions Vector of predictions
* @return PyTorch tensor with predictions
* @brief Reset all parameters to defaults for current kernel type
*/
torch::Tensor from_predictions(const std::vector<double>& predictions);
/**
* @brief Convert probabilities back to PyTorch tensor
* @param probabilities 2D vector of class probabilities
* @return PyTorch tensor with probabilities of shape (n_samples, n_classes)
*/
torch::Tensor from_probabilities(const std::vector<std::vector<double>>& probabilities);
/**
* @brief Convert decision values back to PyTorch tensor
* @param decision_values 2D vector of decision function values
* @return PyTorch tensor with decision values
*/
torch::Tensor from_decision_values(const std::vector<std::vector<double>>& decision_values);
/**
* @brief Validate input tensors
* @param X Feature tensor
* @param y Target tensor (optional)
* @throws std::invalid_argument if tensors are invalid
*/
void validate_tensors(const torch::Tensor& X, const torch::Tensor& y = torch::Tensor());
/**
* @brief Get number of features from last conversion
* @return Number of features
*/
int get_n_features() const { return n_features_; }
/**
* @brief Get number of samples from last conversion
* @return Number of samples
*/
int get_n_samples() const { return n_samples_; }
/**
* @brief Clean up all allocated memory
*/
void cleanup();
/**
* @brief Set sparse threshold (features with absolute value below this are ignored)
* @param threshold Sparse threshold (default: 1e-8)
*/
void set_sparse_threshold(double threshold) { sparse_threshold_ = threshold; }
/**
* @brief Get sparse threshold
* @return Current sparse threshold
*/
double get_sparse_threshold() const { return sparse_threshold_; }
void reset_to_defaults();
private:
int n_features_; ///< Number of features
int n_samples_; ///< Number of samples
double sparse_threshold_; ///< Threshold for sparse features
KernelType kernel_type_; ///< Kernel type
MulticlassStrategy multiclass_strategy_; ///< Multiclass strategy
// Common parameters
double C_; ///< Regularization parameter
double tolerance_; ///< Convergence tolerance
int max_iterations_; ///< Maximum iterations (-1 for no limit)
bool probability_; ///< Enable probability estimates
double cache_size_; ///< Cache size in MB
// Memory management for libsvm structures
std::vector<std::vector<svm_node>> svm_nodes_storage_;
std::vector<svm_node*> svm_x_space_;
std::vector<double> svm_y_space_;
// Memory management for liblinear structures
std::vector<std::vector<feature_node>> linear_nodes_storage_;
std::vector<feature_node*> linear_x_space_;
std::vector<double> linear_y_space_;
// Single sample storage (for prediction)
std::vector<svm_node> single_svm_nodes_;
std::vector<feature_node> single_linear_nodes_;
// Kernel-specific parameters
double gamma_; ///< Gamma parameter (-1 for auto)
int degree_; ///< Polynomial degree
double coef0_; ///< Independent term in polynomial/sigmoid
/**
* @brief Convert tensor data to libsvm nodes for multiple samples
* @param X Feature tensor
* @return Vector of svm_node vectors
* @brief Validate kernel-specific parameters
* @throws std::invalid_argument if kernel parameters are invalid
*/
std::vector<std::vector<svm_node>> tensor_to_svm_nodes(const torch::Tensor& X);
/**
* @brief Convert tensor data to liblinear nodes for multiple samples
* @param X Feature tensor
* @return Vector of feature_node vectors
*/
std::vector<std::vector<feature_node>> tensor_to_linear_nodes(const torch::Tensor& X);
/**
* @brief Convert single tensor sample to svm_node vector
* @param sample Feature tensor of shape (n_features,)
* @return Vector of svm_node structures
*/
std::vector<svm_node> sample_to_svm_nodes(const torch::Tensor& sample);
/**
* @brief Convert single tensor sample to feature_node vector
* @param sample Feature tensor of shape (n_features,)
* @return Vector of feature_node structures
*/
std::vector<feature_node> sample_to_linear_nodes(const torch::Tensor& sample);
/**
* @brief Extract labels from target tensor
* @param y Target tensor
* @return Vector of double labels
*/
std::vector<double> extract_labels(const torch::Tensor& y);
/**
* @brief Check if tensor is on CPU and convert if necessary
* @param tensor Input tensor
* @return Tensor guaranteed to be on CPU
*/
torch::Tensor ensure_cpu_tensor(const torch::Tensor& tensor);
/**
* @brief Validate tensor dimensions and data type
* @param tensor Tensor to validate
* @param expected_dims Expected number of dimensions
* @param name Tensor name for error messages
*/
void validate_tensor_properties(const torch::Tensor& tensor, int expected_dims, const std::string& name);
void validate_kernel_parameters() const;
};
} // namespace svm_classifier

View File

@@ -8,7 +8,7 @@
#include <memory>
#include <unordered_map>
// Forward declarations
// Forward declarations for external library structures
struct svm_model;
struct model;

View File

@@ -196,7 +196,7 @@ namespace svm_classifier {
* @brief Get SVM library being used
* @return SVM library type
*/
SVMLibrary get_svm_library() const { return get_svm_library(params_.get_kernel_type()); }
SVMLibrary get_svm_library() const { return ::svm_classifier::get_svm_library(params_.get_kernel_type()); }
/**
* @brief Perform cross-validation

View File

@@ -134,17 +134,29 @@ namespace svm_classifier {
break;
case KernelType::RBF:
params["gamma"] = is_gamma_auto() ? "auto" : gamma_;
if (is_gamma_auto()) {
params["gamma"] = "auto";
} else {
params["gamma"] = gamma_;
}
break;
case KernelType::POLYNOMIAL:
params["degree"] = degree_;
params["gamma"] = is_gamma_auto() ? "auto" : gamma_;
if (is_gamma_auto()) {
params["gamma"] = "auto";
} else {
params["gamma"] = gamma_;
}
params["coef0"] = coef0_;
break;
case KernelType::SIGMOID:
params["gamma"] = is_gamma_auto() ? "auto" : gamma_;
if (is_gamma_auto()) {
params["gamma"] = "auto";
} else {
params["gamma"] = gamma_;
}
params["coef0"] = coef0_;
break;
}

View File

@@ -6,6 +6,7 @@
#include <unordered_set>
#include <chrono>
#include <cmath>
#include <numeric> // for std::accumulate
namespace svm_classifier {
@@ -31,11 +32,11 @@ namespace svm_classifier {
// Store parameters and determine library type
params_ = params;
library_type_ = get_svm_library(params.get_kernel_type());
library_type_ = ::svm_classifier::get_svm_library(params.get_kernel_type());
// Extract unique classes
auto y_cpu = y.to(torch::kCPU);
auto unique_classes_tensor = torch::unique(y_cpu);
auto unique_classes_tensor = std::get<0>(at::_unique(y_cpu));
classes_.clear();
for (int i = 0; i < unique_classes_tensor.size(0); ++i) {
@@ -347,14 +348,16 @@ namespace svm_classifier {
{
for (auto& model : svm_models_) {
if (model) {
svm_free_and_destroy_model(&model);
auto raw_model = model.release();
svm_free_and_destroy_model(&raw_model);
}
}
svm_models_.clear();
for (auto& model : linear_models_) {
if (model) {
free_and_destroy_model(&model);
auto raw_model = model.release();
free_and_destroy_model(&raw_model);
}
}
linear_models_.clear();
@@ -384,11 +387,11 @@ namespace svm_classifier {
// Store parameters and determine library type
params_ = params;
library_type_ = get_svm_library(params.get_kernel_type());
library_type_ = ::svm_classifier::get_svm_library(params.get_kernel_type());
// Extract unique classes
auto y_cpu = y.to(torch::kCPU);
auto unique_classes_tensor = torch::unique(y_cpu);
auto unique_classes_tensor = std::get<0>(at::_unique(y_cpu));
classes_.clear();
for (int i = 0; i < unique_classes_tensor.size(0); ++i) {
@@ -492,4 +495,231 @@ namespace svm_classifier {
return probabilities;
}
std::vector<std::vector<double>> OneVsOneStrategy::decision_function(const torch::Tensor& X,
std::vector<std::vector<double>> OneVsOneStrategy::decision_function(const torch::Tensor& X,
DataConverter& converter)
{
if (!is_trained_) {
throw std::runtime_error("Model is not trained");
}
std::vector<std::vector<double>> decision_values;
decision_values.reserve(X.size(0));
for (int i = 0; i < X.size(0); ++i) {
auto sample = X[i];
std::vector<double> sample_decisions;
sample_decisions.reserve(class_pairs_.size());
for (size_t j = 0; j < class_pairs_.size(); ++j) {
if (library_type_ == SVMLibrary::LIBSVM && svm_models_[j]) {
auto sample_node = converter.to_svm_node(sample);
double decision_value;
svm_predict_values(svm_models_[j].get(), sample_node, &decision_value);
sample_decisions.push_back(decision_value);
} else if (library_type_ == SVMLibrary::LIBLINEAR && linear_models_[j]) {
auto sample_node = converter.to_feature_node(sample);
double decision_value;
predict_values(linear_models_[j].get(), sample_node, &decision_value);
sample_decisions.push_back(decision_value);
} else {
sample_decisions.push_back(0.0);
}
}
decision_values.push_back(sample_decisions);
}
return decision_values;
}
bool OneVsOneStrategy::supports_probability() const
{
return params_.get_probability();
}
std::pair<torch::Tensor, torch::Tensor> OneVsOneStrategy::extract_binary_data(const torch::Tensor& X,
const torch::Tensor& y,
int class1,
int class2)
{
auto mask = (y == class1) | (y == class2);
auto filtered_X = X.index_select(0, torch::nonzero(mask).squeeze());
auto filtered_y = y.index_select(0, torch::nonzero(mask).squeeze());
// Convert to binary labels: class1 -> +1, class2 -> -1
auto binary_y = torch::where(filtered_y == class1, torch::ones_like(filtered_y), torch::full_like(filtered_y, -1));
return std::make_pair(filtered_X, binary_y);
}
double OneVsOneStrategy::train_pairwise_classifier(const torch::Tensor& X,
const torch::Tensor& y,
int class1,
int class2,
const KernelParameters& params,
DataConverter& converter,
int model_idx)
{
auto start_time = std::chrono::high_resolution_clock::now();
auto [filtered_X, binary_y] = extract_binary_data(X, y, class1, class2);
if (library_type_ == SVMLibrary::LIBSVM) {
// Use libsvm
auto problem = converter.to_svm_problem(filtered_X, binary_y);
// Setup SVM parameters (similar to OneVsRest)
svm_parameter svm_params;
svm_params.svm_type = C_SVC;
switch (params.get_kernel_type()) {
case KernelType::RBF:
svm_params.kernel_type = RBF;
break;
case KernelType::POLYNOMIAL:
svm_params.kernel_type = POLY;
break;
case KernelType::SIGMOID:
svm_params.kernel_type = SIGMOID;
break;
default:
throw std::runtime_error("Invalid kernel type for libsvm");
}
svm_params.degree = params.get_degree();
svm_params.gamma = (params.get_gamma() == -1.0) ? 1.0 / filtered_X.size(1) : params.get_gamma();
svm_params.coef0 = params.get_coef0();
svm_params.cache_size = params.get_cache_size();
svm_params.eps = params.get_tolerance();
svm_params.C = params.get_C();
svm_params.nr_weight = 0;
svm_params.weight_label = nullptr;
svm_params.weight = nullptr;
svm_params.nu = 0.5;
svm_params.p = 0.1;
svm_params.shrinking = 1;
svm_params.probability = params.get_probability() ? 1 : 0;
// Check parameters
const char* error_msg = svm_check_parameter(problem.get(), &svm_params);
if (error_msg) {
throw std::runtime_error("SVM parameter error: " + std::string(error_msg));
}
// Train model
auto model = svm_train(problem.get(), &svm_params);
if (!model) {
throw std::runtime_error("Failed to train SVM model");
}
svm_models_[model_idx] = std::unique_ptr<svm_model>(model);
} else {
// Use liblinear
auto problem = converter.to_linear_problem(filtered_X, binary_y);
// Setup linear parameters
parameter linear_params;
linear_params.solver_type = L2R_L2LOSS_SVC_DUAL;
linear_params.C = params.get_C();
linear_params.eps = params.get_tolerance();
linear_params.nr_weight = 0;
linear_params.weight_label = nullptr;
linear_params.weight = nullptr;
linear_params.p = 0.1;
linear_params.nu = 0.5;
linear_params.init_sol = nullptr;
linear_params.regularize_bias = 0;
// Check parameters
const char* error_msg = check_parameter(problem.get(), &linear_params);
if (error_msg) {
throw std::runtime_error("Linear parameter error: " + std::string(error_msg));
}
// Train model
auto model = train(problem.get(), &linear_params);
if (!model) {
throw std::runtime_error("Failed to train linear model");
}
linear_models_[model_idx] = std::unique_ptr<::model>(model);
}
auto end_time = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end_time - start_time);
return duration.count() / 1000.0;
}
std::vector<int> OneVsOneStrategy::vote_predictions(const std::vector<std::vector<double>>& decisions)
{
std::vector<int> predictions;
predictions.reserve(decisions.size());
for (const auto& decision_row : decisions) {
std::vector<int> votes(classes_.size(), 0);
// Count votes from pairwise decisions
for (size_t i = 0; i < class_pairs_.size(); ++i) {
auto [class1, class2] = class_pairs_[i];
double decision = decision_row[i];
auto it1 = std::find(classes_.begin(), classes_.end(), class1);
auto it2 = std::find(classes_.begin(), classes_.end(), class2);
if (it1 != classes_.end() && it2 != classes_.end()) {
size_t idx1 = std::distance(classes_.begin(), it1);
size_t idx2 = std::distance(classes_.begin(), it2);
if (decision > 0) {
votes[idx1]++;
} else {
votes[idx2]++;
}
}
}
// Find class with most votes
auto max_it = std::max_element(votes.begin(), votes.end());
int predicted_class_idx = std::distance(votes.begin(), max_it);
predictions.push_back(classes_[predicted_class_idx]);
}
return predictions;
}
void OneVsOneStrategy::cleanup_models()
{
for (auto& model : svm_models_) {
if (model) {
auto raw_model = model.release();
svm_free_and_destroy_model(&raw_model);
}
}
svm_models_.clear();
for (auto& model : linear_models_) {
if (model) {
auto raw_model = model.release();
free_and_destroy_model(&raw_model);
}
}
linear_models_.clear();
is_trained_ = false;
}
// Factory function
std::unique_ptr<MulticlassStrategyBase> create_multiclass_strategy(MulticlassStrategy strategy)
{
switch (strategy) {
case MulticlassStrategy::ONE_VS_REST:
return std::make_unique<OneVsRestStrategy>();
case MulticlassStrategy::ONE_VS_ONE:
return std::make_unique<OneVsOneStrategy>();
default:
throw std::invalid_argument("Unknown multiclass strategy");
}
}
} // namespace svm_classifier

View File

@@ -23,16 +23,31 @@ target_link_libraries(svm_classifier_tests
PRIVATE
svm_classifier
Catch2::Catch2WithMain
nlohmann_json::nlohmann_json
)
# Set include directories
# Set include directories - Handle external libraries dynamically
target_include_directories(svm_classifier_tests
PRIVATE
${CMAKE_SOURCE_DIR}/include
${CMAKE_SOURCE_DIR}/external/libsvm
${CMAKE_SOURCE_DIR}/external/liblinear
)
# Add libsvm include directory if available
if(EXISTS "${CMAKE_CURRENT_BINARY_DIR}/../_deps/libsvm-src")
target_include_directories(svm_classifier_tests
PRIVATE "${CMAKE_CURRENT_BINARY_DIR}/../_deps/libsvm-src"
)
endif()
# Add liblinear include directories if available
if(EXISTS "${CMAKE_CURRENT_BINARY_DIR}/../_deps/liblinear-src")
target_include_directories(svm_classifier_tests
PRIVATE
"${CMAKE_CURRENT_BINARY_DIR}/../_deps/liblinear-src"
"${CMAKE_CURRENT_BINARY_DIR}/../_deps/liblinear-src/blas"
)
endif()
# Compiler flags for tests
target_compile_features(svm_classifier_tests PRIVATE cxx_std_17)

View File

@@ -7,6 +7,10 @@
#include <svm_classifier/data_converter.hpp>
#include <torch/torch.h>
// Include the actual headers for complete struct definitions
#include "svm.h" // libsvm structures
#include "linear.h" // liblinear structures
using namespace svm_classifier;
TEST_CASE("DataConverter Basic Functionality", "[unit][data_converter]")

View File

@@ -10,7 +10,13 @@
#include <iostream>
#include <iomanip>
// Include the actual headers for complete struct definitions
#include "svm.h" // libsvm structures
#include "linear.h" // liblinear structures
#include <nlohmann/json.hpp>
using namespace svm_classifier;
using json = nlohmann::json;
/**
* @brief Generate large synthetic dataset for performance testing

View File

@@ -283,7 +283,7 @@ TEST_CASE("SVMClassifier Prediction", "[integration][svm_classifier]")
REQUIRE(predictions.size(0) == X_test.size(0));
// Check that predictions are valid class labels
auto unique_preds = torch::unique(predictions);
auto unique_preds = std::get<0>(at::_unique(predictions));
for (int i = 0; i < unique_preds.size(0); ++i) {
int pred_class = unique_preds[i].item<int>();
auto classes = svm.get_classes();