Compare commits
1 Commits
d37c686e05
...
v104
Author | SHA1 | Date | |
---|---|---|---|
9966ba4af8
|
13
.gitmodules
vendored
Normal file
13
.gitmodules
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
|
||||
[submodule "lib/json"]
|
||||
path = lib/json
|
||||
url = https://github.com/nlohmann/json.git
|
||||
[submodule "lib/catch2"]
|
||||
path = tests/lib/catch2
|
||||
url = https://github.com/catchorg/Catch2.git
|
||||
[submodule "lib/mdlp"]
|
||||
path = tests/lib/mdlp
|
||||
url = https://github.com/rmontanana/mdlp
|
||||
[submodule "tests/lib/Files"]
|
||||
path = tests/lib/Files
|
||||
url = https://github.com/rmontanana/ArffFiles
|
@@ -45,8 +45,6 @@ endif()
|
||||
find_package(Python3 3.11 COMPONENTS Interpreter Development REQUIRED)
|
||||
message("Python3_LIBRARIES=${Python3_LIBRARIES}")
|
||||
|
||||
find_package(nlohmann_json CONFIG REQUIRED)
|
||||
|
||||
# CMakes modules
|
||||
# --------------
|
||||
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
|
||||
@@ -66,10 +64,9 @@ endif (ENABLE_CLANG_TIDY)
|
||||
|
||||
# External libraries - dependencies of PyClassifiers
|
||||
# --------------------------------------------------
|
||||
find_library(bayesnet NAMES libbayesnet bayesnet libbayesnet.a PATHS ${PyClassifiers_SOURCE_DIR}/../lib/lib REQUIRED)
|
||||
find_path(Bayesnet_INCLUDE_DIRS REQUIRED NAMES bayesnet PATHS ../lib/include)
|
||||
|
||||
message(STATUS "BayesNet=${bayesnet}")
|
||||
find_library(BayesNet NAMES libBayesNet BayesNet libBayesNet.a PATHS ${PyClassifiers_SOURCE_DIR}/../lib/lib REQUIRED)
|
||||
find_path(Bayesnet_INCLUDE_DIRS REQUIRED NAMES bayesnet PATHS ${PyClassifiers_SOURCE_DIR}/../lib/include)
|
||||
message(STATUS "BayesNet=${BayesNet}")
|
||||
message(STATUS "Bayesnet_INCLUDE_DIRS=${Bayesnet_INCLUDE_DIRS}")
|
||||
|
||||
|
||||
@@ -81,8 +78,9 @@ add_subdirectory(pyclfs)
|
||||
# -------
|
||||
if (ENABLE_TESTING)
|
||||
MESSAGE("Testing enabled")
|
||||
find_package(Catch2 CONFIG REQUIRED)
|
||||
find_package(arff-files CONFIG REQUIRED)
|
||||
add_git_submodule(tests/lib/catch2)
|
||||
add_git_submodule(tests/lib/mdlp)
|
||||
add_subdirectory(tests/lib/Files)
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
endif (ENABLE_TESTING)
|
||||
@@ -94,4 +92,4 @@ install(TARGETS PyClassifiers
|
||||
LIBRARY DESTINATION lib
|
||||
CONFIGURATIONS Release)
|
||||
install(DIRECTORY pyclfs/ DESTINATION include/pyclassifiers FILES_MATCHING CONFIGURATIONS Release PATTERN "*.h" PATTERN "*.hpp")
|
||||
install(FILES ${Bayesnet_INCLUDE_DIRS}/bayesnet/config.h DESTINATION include/pyclassifiers CONFIGURATIONS Release)
|
||||
install(FILES ${Bayesnet_INCLUDE_DIRS}/bayesnet/config.h DESTINATION include/pyclassifiers CONFIGURATIONS Release)
|
4
Makefile
4
Makefile
@@ -52,14 +52,14 @@ debug: ## Build a debug version of the project
|
||||
@echo ">>> Building Debug PyClassifiers...";
|
||||
@if [ -d ./$(f_debug) ]; then rm -rf ./$(f_debug); fi
|
||||
@mkdir $(f_debug);
|
||||
@cmake -S . -B $(f_debug) -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON -DCMAKE_TOOLCHAIN_FILE=${VCPKG_ROOT}/scripts/buildsystems/vcpkg.cmake
|
||||
@cmake -S . -B $(f_debug) -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON
|
||||
@echo ">>> Done";
|
||||
|
||||
release: ## Build a Release version of the project
|
||||
@echo ">>> Building Release PyClassifiers...";
|
||||
@if [ -d ./$(f_release) ]; then rm -rf ./$(f_release); fi
|
||||
@mkdir $(f_release);
|
||||
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=${VCPKG_ROOT}/scripts/buildsystems/vcpkg.cmake
|
||||
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release
|
||||
@echo ">>> Done";
|
||||
|
||||
opt = ""
|
||||
|
1
lib/json
Submodule
1
lib/json
Submodule
Submodule lib/json added at 48e7b4c23b
@@ -1,20 +0,0 @@
|
||||
#include "AdaBoostPy.h"
|
||||
|
||||
namespace pywrap {
|
||||
AdaBoostPy::AdaBoostPy() : PyClassifier("sklearn.ensemble", "AdaBoostClassifier", true)
|
||||
{
|
||||
validHyperparameters = { "n_estimators", "n_jobs", "random_state" };
|
||||
}
|
||||
int AdaBoostPy::getNumberOfEdges() const
|
||||
{
|
||||
return callMethodSumOfItems("get_n_leaves");
|
||||
}
|
||||
int AdaBoostPy::getNumberOfStates() const
|
||||
{
|
||||
return callMethodSumOfItems("get_depth");
|
||||
}
|
||||
int AdaBoostPy::getNumberOfNodes() const
|
||||
{
|
||||
return callMethodSumOfItems("node_count");
|
||||
}
|
||||
} /* namespace pywrap */
|
@@ -1,15 +0,0 @@
|
||||
#ifndef ADABOOSTPY_H
|
||||
#define ADABOOSTPY_H
|
||||
#include "PyClassifier.h"
|
||||
|
||||
namespace pywrap {
|
||||
class AdaBoostPy : public PyClassifier {
|
||||
public:
|
||||
AdaBoostPy();
|
||||
~AdaBoostPy() = default;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
int getNumberOfNodes() const override;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* ADABOOST_H */
|
@@ -4,5 +4,5 @@ include_directories(
|
||||
${PyClassifiers_SOURCE_DIR}/lib/json/include
|
||||
${Bayesnet_INCLUDE_DIRS}
|
||||
)
|
||||
add_library(PyClassifiers ODTE.cc STree.cc SVC.cc RandomForest.cc XGBoost.cc AdaBoostPy.cc PyClassifier.cc PyWrap.cc)
|
||||
target_link_libraries(PyClassifiers nlohmann_json::nlohmann_json ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy)
|
||||
add_library(PyClassifiers ODTE.cc STree.cc SVC.cc RandomForest.cc XGBoost.cc PyClassifier.cc PyWrap.cc PBC4cip.cc)
|
||||
target_link_libraries(PyClassifiers ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy)
|
8
pyclfs/PBC4cip.cc
Normal file
8
pyclfs/PBC4cip.cc
Normal file
@@ -0,0 +1,8 @@
|
||||
#include "PBC4cip.h"
|
||||
|
||||
namespace pywrap {
|
||||
PBC4cip::PBC4cip() : PyClassifier("core.PBC4cip", "PBC4cip", true)
|
||||
{
|
||||
validHyperparameters = { "random_state" };
|
||||
}
|
||||
} /* namespace pywrap */
|
13
pyclfs/PBC4cip.h
Normal file
13
pyclfs/PBC4cip.h
Normal file
@@ -0,0 +1,13 @@
|
||||
#ifndef PBC4CIP_H
|
||||
#define PBC4CIP_H
|
||||
#include "PyClassifier.h"
|
||||
|
||||
namespace pywrap {
|
||||
class PBC4cip : public PyClassifier {
|
||||
public:
|
||||
PBC4cip();
|
||||
~PBC4cip() = default;
|
||||
};
|
||||
|
||||
} /* namespace pywrap */
|
||||
#endif /* PBC4CIP_H */
|
@@ -93,19 +93,11 @@ namespace pywrap {
|
||||
PyErr_Print();
|
||||
throw std::runtime_error("Error creating object for predict in " + module + " and class " + className);
|
||||
}
|
||||
if (xgboost) {
|
||||
long* data = reinterpret_cast<long*>(prediction.get_data());
|
||||
std::vector<int> vPrediction(data, data + prediction.shape(0));
|
||||
auto resultTensor = torch::tensor(vPrediction, torch::kInt32);
|
||||
Py_XDECREF(incoming);
|
||||
return resultTensor;
|
||||
} else {
|
||||
int* data = reinterpret_cast<int*>(prediction.get_data());
|
||||
std::vector<int> vPrediction(data, data + prediction.shape(0));
|
||||
auto resultTensor = torch::tensor(vPrediction, torch::kInt32);
|
||||
Py_XDECREF(incoming);
|
||||
return resultTensor;
|
||||
}
|
||||
int* data = reinterpret_cast<int*>(prediction.get_data());
|
||||
std::vector<int> vPrediction(data, data + prediction.shape(0));
|
||||
auto resultTensor = torch::tensor(vPrediction, torch::kInt32);
|
||||
Py_XDECREF(incoming);
|
||||
return resultTensor;
|
||||
}
|
||||
torch::Tensor PyClassifier::predict_proba(torch::Tensor& X)
|
||||
{
|
||||
@@ -126,19 +118,11 @@ namespace pywrap {
|
||||
PyErr_Print();
|
||||
throw std::runtime_error("Error creating object for predict_proba in " + module + " and class " + className);
|
||||
}
|
||||
if (xgboost) {
|
||||
float* data = reinterpret_cast<float*>(prediction.get_data());
|
||||
std::vector<float> vPrediction(data, data + prediction.shape(0) * prediction.shape(1));
|
||||
auto resultTensor = torch::tensor(vPrediction, torch::kFloat64).reshape({ prediction.shape(0), prediction.shape(1) });
|
||||
Py_XDECREF(incoming);
|
||||
return resultTensor;
|
||||
} else {
|
||||
double* data = reinterpret_cast<double*>(prediction.get_data());
|
||||
std::vector<double> vPrediction(data, data + prediction.shape(0) * prediction.shape(1));
|
||||
auto resultTensor = torch::tensor(vPrediction, torch::kFloat64).reshape({ prediction.shape(0), prediction.shape(1) });
|
||||
Py_XDECREF(incoming);
|
||||
return resultTensor;
|
||||
}
|
||||
double* data = reinterpret_cast<double*>(prediction.get_data());
|
||||
std::vector<double> vPrediction(data, data + prediction.shape(0) * prediction.shape(1));
|
||||
auto resultTensor = torch::tensor(vPrediction, torch::kFloat64).reshape({ prediction.shape(0), prediction.shape(1) });
|
||||
Py_XDECREF(incoming);
|
||||
return resultTensor;
|
||||
}
|
||||
float PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
@@ -151,4 +135,4 @@ namespace pywrap {
|
||||
{
|
||||
this->hyperparameters = hyperparameters;
|
||||
}
|
||||
} /* namespace pywrap */
|
||||
} /* namespace pywrap */
|
@@ -49,7 +49,6 @@ namespace pywrap {
|
||||
nlohmann::json hyperparameters;
|
||||
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override {};
|
||||
std::vector<std::string> notes;
|
||||
bool xgboost = false;
|
||||
private:
|
||||
PyWrap* pyWrap;
|
||||
std::string module;
|
||||
|
@@ -5,6 +5,5 @@ namespace pywrap {
|
||||
XGBoost::XGBoost() : PyClassifier("xgboost", "XGBClassifier", true)
|
||||
{
|
||||
validHyperparameters = { "tree_method", "early_stopping_rounds", "n_jobs" };
|
||||
xgboost = true;
|
||||
}
|
||||
} /* namespace pywrap */
|
@@ -2,13 +2,15 @@ if(ENABLE_TESTING)
|
||||
set(TEST_PYCLASSIFIERS "unit_tests_pyclassifiers")
|
||||
include_directories(
|
||||
${PyClassifiers_SOURCE_DIR}
|
||||
${PyClassifiers_SOURCE_DIR}/lib/Files
|
||||
${PyClassifiers_SOURCE_DIR}/lib/mdlp
|
||||
${PyClassifiers_SOURCE_DIR}/lib/json/include
|
||||
${Python3_INCLUDE_DIRS}
|
||||
${TORCH_INCLUDE_DIRS}
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
/usr/local/include
|
||||
)
|
||||
file(GLOB_RECURSE PyClassifiers_SOURCES "${PyClassifiers_SOURCE_DIR}/pyclfs/*.cc")
|
||||
set(TEST_SOURCES_PYCLASSIFIERS TestPythonClassifiers.cc TestUtils.cc ${PyClassifiers_SOURCES})
|
||||
add_executable(${TEST_PYCLASSIFIERS} ${TEST_SOURCES_PYCLASSIFIERS})
|
||||
target_link_libraries(${TEST_PYCLASSIFIERS} PUBLIC "${TORCH_LIBRARIES}" ${Python3_LIBRARIES} ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy fimdlp Catch2::Catch2WithMain)
|
||||
target_link_libraries(${TEST_PYCLASSIFIERS} PUBLIC "${TORCH_LIBRARIES}" ${Python3_LIBRARIES} ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy ArffFiles mdlp Catch2::Catch2WithMain)
|
||||
endif(ENABLE_TESTING)
|
@@ -10,16 +10,14 @@
|
||||
#include "pyclfs/SVC.h"
|
||||
#include "pyclfs/RandomForest.h"
|
||||
#include "pyclfs/XGBoost.h"
|
||||
#include "pyclfs/AdaBoostPy.h"
|
||||
#include "pyclfs/ODTE.h"
|
||||
#include "TestUtils.h"
|
||||
#include <iostream>
|
||||
|
||||
TEST_CASE("Test Python Classifiers score", "[PyClassifiers]")
|
||||
{
|
||||
map <pair<std::string, std::string>, float> scores = {
|
||||
// Diabetes
|
||||
{{"diabetes", "STree"}, 0.81641}, {{"diabetes", "ODTE"}, 0.856770813f}, {{"diabetes", "SVC"}, 0.76823}, {{"diabetes", "RandomForest"}, 1.0},
|
||||
{{"diabetes", "STree"}, 0.81641}, {{"diabetes", "ODTE"}, 0.854166687}, {{"diabetes", "SVC"}, 0.76823}, {{"diabetes", "RandomForest"}, 1.0},
|
||||
// Ecoli
|
||||
{{"ecoli", "STree"}, 0.8125}, {{"ecoli", "ODTE"}, 0.875}, {{"ecoli", "SVC"}, 0.89583}, {{"ecoli", "RandomForest"}, 1.0},
|
||||
// Glass
|
||||
@@ -35,10 +33,10 @@ TEST_CASE("Test Python Classifiers score", "[PyClassifiers]")
|
||||
{"RandomForest", new pywrap::RandomForest()}
|
||||
};
|
||||
map<std::string, std::string> versions = {
|
||||
{"ODTE", "1.0.0-1"},
|
||||
{"STree", "1.4.0"},
|
||||
{"SVC", "1.5.2"},
|
||||
{"RandomForest", "1.5.2"}
|
||||
{"ODTE", "1.0.0"},
|
||||
{"STree", "1.3.2"},
|
||||
{"SVC", "1.5.1"},
|
||||
{"RandomForest", "1.5.1"}
|
||||
};
|
||||
auto clf = models[name];
|
||||
|
||||
@@ -60,15 +58,6 @@ TEST_CASE("Test Python Classifiers score", "[PyClassifiers]")
|
||||
REQUIRE(clf->getVersion() == versions[name]);
|
||||
}
|
||||
}
|
||||
TEST_CASE("AdaBoostClassifier", "[PyClassifiers]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", false);
|
||||
auto clf = pywrap::AdaBoostPy();
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
clf.setHyperparameters(nlohmann::json::parse("{ \"n_estimators\": 100 }"));
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
REQUIRE(score == Catch::Approx(0.9599999f).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Classifiers features", "[PyClassifiers]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", false);
|
||||
@@ -127,30 +116,33 @@ TEST_CASE("XGBoost", "[PyClassifiers]")
|
||||
clf.setHyperparameters(hyperparameters);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
REQUIRE(score == Catch::Approx(0.98).epsilon(raw.epsilon));
|
||||
std::cout << "XGBoost score: " << score << std::endl;
|
||||
}
|
||||
TEST_CASE("XGBoost predict proba", "[PyClassifiers]")
|
||||
// TEST_CASE("XGBoost predict proba", "[PyClassifiers]")
|
||||
// {
|
||||
// auto raw = RawDatasets("iris", true);
|
||||
// auto clf = pywrap::XGBoost();
|
||||
// clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
// // nlohmann::json hyperparameters = { "n_jobs=1" };
|
||||
// // clf.setHyperparameters(hyperparameters);
|
||||
// auto predict = clf.predict(raw.Xt);
|
||||
// for (int row = 0; row < predict.size(0); row++) {
|
||||
// auto sum = 0.0;
|
||||
// for (int col = 0; col < predict.size(1); col++) {
|
||||
// std::cout << std::setw(12) << std::setprecision(10) << predict[row][col].item<double>() << " ";
|
||||
// sum += predict[row][col].item<int>();
|
||||
// }
|
||||
// std::cout << std::endl;
|
||||
// // REQUIRE(sum == Catch::Approx(1.0).epsilon(raw.epsilon));
|
||||
// }
|
||||
// std::cout << predict << std::endl;
|
||||
// }
|
||||
TEST_CASE("PBC4cip", "[PyClassifiers]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = pywrap::XGBoost();
|
||||
auto clf = pywrap::PBC4cip();
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
// nlohmann::json hyperparameters = { "n_jobs=1" };
|
||||
// clf.setHyperparameters(hyperparameters);
|
||||
auto predict_proba = clf.predict_proba(raw.Xt);
|
||||
auto predict = clf.predict(raw.Xt);
|
||||
// std::cout << "Predict proba: " << predict_proba << std::endl;
|
||||
// std::cout << "Predict proba size: " << predict_proba.sizes() << std::endl;
|
||||
// assert(predict.size(0) == predict_proba.size(0));
|
||||
for (int row = 0; row < predict_proba.size(0); row++) {
|
||||
// auto sum = 0.0;
|
||||
// std::cout << "Row " << std::setw(3) << row << ": ";
|
||||
// for (int col = 0; col < predict_proba.size(1); col++) {
|
||||
// std::cout << std::setw(9) << std::fixed << std::setprecision(7) << predict_proba[row][col].item<double>() << " ";
|
||||
// sum += predict_proba[row][col].item<double>();
|
||||
// }
|
||||
// std::cout << " -> " << std::setw(9) << std::fixed << std::setprecision(7) << sum << " -> " << torch::argmax(predict_proba[row]).item<int>() << " = " << predict[row].item<int>() << std::endl;
|
||||
// // REQUIRE(sum == Catch::Approx(1.0).epsilon(raw.epsilon));
|
||||
REQUIRE(torch::argmax(predict_proba[row]).item<int>() == predict[row].item<int>());
|
||||
REQUIRE(torch::sum(predict_proba[row]).item<double>() == Catch::Approx(1.0).epsilon(raw.epsilon));
|
||||
}
|
||||
nlohmann::json hyperparameters = { };
|
||||
clf.setHyperparameters(hyperparameters);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
REQUIRE(score == Catch::Approx(0.98).epsilon(raw.epsilon));
|
||||
}
|
@@ -5,8 +5,8 @@
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <tuple>
|
||||
#include "ArffFiles/ArffFiles.hpp"
|
||||
#include "fimdlp/CPPFImdlp.h"
|
||||
#include "ArffFiles.h"
|
||||
#include "CPPFImdlp.h"
|
||||
|
||||
bool file_exists(const std::string& name);
|
||||
std::pair<vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y, std::vector<string> features);
|
||||
|
1
tests/lib/Files
Submodule
1
tests/lib/Files
Submodule
Submodule tests/lib/Files added at a4329f5f9d
1
tests/lib/catch2
Submodule
1
tests/lib/catch2
Submodule
Submodule tests/lib/catch2 added at 506276c592
1
tests/lib/mdlp
Submodule
1
tests/lib/mdlp
Submodule
Submodule tests/lib/mdlp added at 7d62d6af4a
@@ -1,21 +0,0 @@
|
||||
{
|
||||
"default-registry": {
|
||||
"kind": "git",
|
||||
"baseline": "760bfd0c8d7c89ec640aec4df89418b7c2745605",
|
||||
"repository": "https://github.com/microsoft/vcpkg"
|
||||
},
|
||||
"registries": [
|
||||
{
|
||||
"kind": "git",
|
||||
"repository": "https://github.com/rmontanana/vcpkg-stash",
|
||||
"baseline": "1ea69243c0e8b0de77c9d1dd6e1d7593ae7f3627",
|
||||
"packages": [
|
||||
"arff-files",
|
||||
"bayesnet",
|
||||
"fimdlp",
|
||||
"folding",
|
||||
"libtorch-bin"
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
47
vcpkg.json
47
vcpkg.json
@@ -1,47 +0,0 @@
|
||||
{
|
||||
"name": "platform",
|
||||
"version-string": "1.1.0",
|
||||
"dependencies": [
|
||||
"arff-files",
|
||||
"nlohmann-json",
|
||||
"fimdlp",
|
||||
"libtorch-bin",
|
||||
"folding",
|
||||
"argparse",
|
||||
"catch2"
|
||||
],
|
||||
"overrides": [
|
||||
{
|
||||
"name": "arff-files",
|
||||
"version": "1.1.0"
|
||||
},
|
||||
{
|
||||
"name": "fimdlp",
|
||||
"version": "2.0.1"
|
||||
},
|
||||
{
|
||||
"name": "libtorch-bin",
|
||||
"version": "2.7.0"
|
||||
},
|
||||
{
|
||||
"name": "bayesnet",
|
||||
"version": "1.1.1"
|
||||
},
|
||||
{
|
||||
"name": "folding",
|
||||
"version": "1.1.1"
|
||||
},
|
||||
{
|
||||
"name": "argpase",
|
||||
"version": "3.2"
|
||||
},
|
||||
{
|
||||
"name": "catch2",
|
||||
"version": "3.8.1"
|
||||
},
|
||||
{
|
||||
"name": "nlohmann-json",
|
||||
"version": "3.11.3"
|
||||
}
|
||||
]
|
||||
}
|
Reference in New Issue
Block a user