Add smoothing parameter for compatibility with BayesNet
This commit is contained in:
@@ -1,7 +1,7 @@
|
|||||||
cmake_minimum_required(VERSION 3.20)
|
cmake_minimum_required(VERSION 3.20)
|
||||||
|
|
||||||
project(PyClassifiers
|
project(PyClassifiers
|
||||||
VERSION 1.0.1
|
VERSION 1.0.2
|
||||||
DESCRIPTION "Python Classifiers Wrapper."
|
DESCRIPTION "Python Classifiers Wrapper."
|
||||||
HOMEPAGE_URL "https://github.com/rmontanana/pyclassifiers"
|
HOMEPAGE_URL "https://github.com/rmontanana/pyclassifiers"
|
||||||
LANGUAGES CXX
|
LANGUAGES CXX
|
||||||
|
@@ -70,7 +70,7 @@ namespace pywrap {
|
|||||||
fitted = true;
|
fitted = true;
|
||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
return fit(X, y);
|
return fit(X, y);
|
||||||
}
|
}
|
||||||
|
@@ -17,12 +17,12 @@ namespace pywrap {
|
|||||||
public:
|
public:
|
||||||
PyClassifier(const std::string& module, const std::string& className, const bool sklearn = false);
|
PyClassifier(const std::string& module, const std::string& className, const bool sklearn = false);
|
||||||
virtual ~PyClassifier();
|
virtual ~PyClassifier();
|
||||||
PyClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override { return *this; };
|
PyClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override { return *this; };
|
||||||
// X is nxm tensor, y is nx1 tensor
|
// X is nxm tensor, y is nx1 tensor
|
||||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override;
|
||||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y);
|
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y);
|
||||||
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override { return *this; };
|
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override { return *this; };
|
||||||
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override { return *this; };
|
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override { return *this; };
|
||||||
torch::Tensor predict(torch::Tensor& X) override;
|
torch::Tensor predict(torch::Tensor& X) override;
|
||||||
std::vector<int> predict(std::vector<std::vector<int >>& X) override { return std::vector<int>(); }; // Not implemented
|
std::vector<int> predict(std::vector<std::vector<int >>& X) override { return std::vector<int>(); }; // Not implemented
|
||||||
torch::Tensor predict_proba(torch::Tensor& X) override { return torch::zeros({ 0, 0 }); } // Not implemented
|
torch::Tensor predict_proba(torch::Tensor& X) override { return torch::zeros({ 0, 0 }); } // Not implemented
|
||||||
@@ -47,7 +47,7 @@ namespace pywrap {
|
|||||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||||
protected:
|
protected:
|
||||||
nlohmann::json hyperparameters;
|
nlohmann::json hyperparameters;
|
||||||
void trainModel(const torch::Tensor& weights) override {};
|
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override {};
|
||||||
std::vector<std::string> notes;
|
std::vector<std::string> notes;
|
||||||
private:
|
private:
|
||||||
PyWrap* pyWrap;
|
PyWrap* pyWrap;
|
||||||
|
Reference in New Issue
Block a user