114 lines
4.5 KiB
C++
114 lines
4.5 KiB
C++
#include "PyClassifier.h"
|
|
namespace pywrap {
|
|
namespace bp = boost::python;
|
|
namespace np = boost::python::numpy;
|
|
PyClassifier::PyClassifier(const std::string& module, const std::string& className, bool sklearn) : module(module), className(className), sklearn(sklearn), fitted(false)
|
|
{
|
|
// This id allows to have more than one instance of the same module/class
|
|
id = reinterpret_cast<clfId_t>(this);
|
|
pyWrap = PyWrap::GetInstance();
|
|
pyWrap->importClass(id, module, className);
|
|
}
|
|
PyClassifier::~PyClassifier()
|
|
{
|
|
pyWrap->clean(id);
|
|
}
|
|
np::ndarray tensor2numpy(torch::Tensor& X)
|
|
{
|
|
int m = X.size(0);
|
|
int n = X.size(1);
|
|
auto Xn = np::from_data(X.data_ptr(), np::dtype::get_builtin<float>(), bp::make_tuple(m, n), bp::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), bp::object());
|
|
Xn = Xn.transpose();
|
|
return Xn;
|
|
}
|
|
np::ndarray tensorInt2numpy(torch::Tensor& X)
|
|
{
|
|
int m = X.size(0);
|
|
int n = X.size(1);
|
|
auto Xn = np::from_data(X.data_ptr(), np::dtype::get_builtin<int>(), bp::make_tuple(m, n), bp::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), bp::object());
|
|
Xn = Xn.transpose();
|
|
//std::cout << "Transposed array:\n" << boost::python::extract<char const*>(boost::python::str(Xn)) << std::endl;
|
|
return Xn;
|
|
}
|
|
std::pair<np::ndarray, np::ndarray> tensors2numpy(torch::Tensor& X, torch::Tensor& y)
|
|
{
|
|
int n = X.size(1);
|
|
auto yn = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), bp::make_tuple(n), bp::make_tuple(sizeof(y.dtype()) * 2), bp::object());
|
|
if (X.dtype() == torch::kInt32) {
|
|
return { tensorInt2numpy(X), yn };
|
|
}
|
|
return { tensor2numpy(X), yn };
|
|
}
|
|
std::string PyClassifier::version()
|
|
{
|
|
if (sklearn) {
|
|
return pyWrap->sklearnVersion();
|
|
}
|
|
return pyWrap->version(id);
|
|
}
|
|
std::string PyClassifier::callMethodString(const std::string& method)
|
|
{
|
|
return pyWrap->callMethodString(id, method);
|
|
}
|
|
int PyClassifier::callMethodSumOfItems(const std::string& method) const
|
|
{
|
|
return pyWrap->callMethodSumOfItems(id, method);
|
|
}
|
|
int PyClassifier::callMethodInt(const std::string& method) const
|
|
{
|
|
return pyWrap->callMethodInt(id, method);
|
|
}
|
|
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y)
|
|
{
|
|
if (!fitted && hyperparameters.size() > 0) {
|
|
pyWrap->setHyperparameters(id, hyperparameters);
|
|
}
|
|
auto [Xn, yn] = tensors2numpy(X, y);
|
|
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
|
|
CPyObject yp = bp::incref(bp::object(yn).ptr());
|
|
pyWrap->fit(id, Xp, yp);
|
|
fitted = true;
|
|
return *this;
|
|
}
|
|
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
|
|
{
|
|
return fit(X, y);
|
|
}
|
|
torch::Tensor PyClassifier::predict(torch::Tensor& X)
|
|
{
|
|
int dimension = X.size(1);
|
|
CPyObject Xp;
|
|
if (X.dtype() == torch::kInt32) {
|
|
auto Xn = tensorInt2numpy(X);
|
|
Xp = bp::incref(bp::object(Xn).ptr());
|
|
} else {
|
|
auto Xn = tensor2numpy(X);
|
|
Xp = bp::incref(bp::object(Xn).ptr());
|
|
}
|
|
PyObject* incoming = pyWrap->predict(id, Xp);
|
|
bp::handle<> handle(incoming);
|
|
bp::object object(handle);
|
|
np::ndarray prediction = np::from_object(object);
|
|
if (PyErr_Occurred()) {
|
|
PyErr_Print();
|
|
throw std::runtime_error("Error creating object for predict in " + module + " and class " + className);
|
|
}
|
|
int* data = reinterpret_cast<int*>(prediction.get_data());
|
|
std::vector<int> vPrediction(data, data + prediction.shape(0));
|
|
auto resultTensor = torch::tensor(vPrediction, torch::kInt32);
|
|
Py_XDECREF(incoming);
|
|
return resultTensor;
|
|
}
|
|
float PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
|
|
{
|
|
auto [Xn, yn] = tensors2numpy(X, y);
|
|
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
|
|
CPyObject yp = bp::incref(bp::object(yn).ptr());
|
|
float result = pyWrap->score(id, Xp, yp);
|
|
return result;
|
|
}
|
|
void PyClassifier::setHyperparameters(const nlohmann::json& hyperparameters)
|
|
{
|
|
this->hyperparameters = hyperparameters;
|
|
}
|
|
} /* namespace pywrap */ |