Add smoothing parameter for compatibility with BayesNet

This commit is contained in:
2024-06-11 13:43:12 +02:00
parent 235c345e87
commit c5ff1a0b2b
3 changed files with 7 additions and 7 deletions

View File

@@ -70,7 +70,7 @@ namespace pywrap {
fitted = true;
return *this;
}
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
return fit(X, y);
}