Almost working
This commit is contained in:
@@ -1,6 +1,5 @@
|
||||
#include "PyClassifier.h"
|
||||
#include <boost/python/numpy.hpp>
|
||||
#include <torch/csrc/utils/tensor_numpy.h>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
namespace pywrap {
|
||||
@@ -17,6 +16,27 @@ namespace pywrap {
|
||||
pyWrap->clean(module, className);
|
||||
std::cout << "Classifier cleaned" << std::endl;
|
||||
}
|
||||
void print_array(np::ndarray& array)
|
||||
{
|
||||
std::cout << "Array: " << std::endl;
|
||||
std::cout << p::extract<char const*>(p::str(array)) << std::endl;
|
||||
}
|
||||
np::ndarray tensor2numpy(torch::Tensor& X)
|
||||
{
|
||||
int m = X.size(0);
|
||||
int n = X.size(1);
|
||||
auto Xn = np::from_data(X.data_ptr(), np::dtype::get_builtin<float>(), p::make_tuple(m, n), p::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), p::object());
|
||||
Xn = Xn.transpose();
|
||||
return Xn;
|
||||
}
|
||||
std::pair<np::ndarray, np::ndarray> tensors2numpy(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
int n = X.size(1);
|
||||
auto yn = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), p::make_tuple(n), p::make_tuple(sizeof(y.dtype()) * 2), p::object());
|
||||
//std::cout << "Printing from within tensors2numpy" << std::endl;
|
||||
// print_array(yn);
|
||||
return { tensor2numpy(X), yn };
|
||||
}
|
||||
std::string PyClassifier::version()
|
||||
{
|
||||
return pyWrap->version(module, className);
|
||||
@@ -29,56 +49,35 @@ namespace pywrap {
|
||||
{
|
||||
return pyWrap->callMethodString(module, className, method);
|
||||
}
|
||||
void print_array(np::ndarray& array)
|
||||
{
|
||||
std::cout << "Array: " << std::endl;
|
||||
std::cout << p::extract<char const*>(p::str(array)) << std::endl;
|
||||
}
|
||||
|
||||
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
std::cout << "PyClassifier:fit:Converting X to PyObject" << std::endl;
|
||||
std::cout << "X.defined() = " << X.defined() << std::endl;
|
||||
int m = X.size(0);
|
||||
int n = X.size(1);
|
||||
auto data_numpy = np::from_data(X.data_ptr(), np::dtype::get_builtin<float>(), p::make_tuple(m, n), p::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), p::object());
|
||||
data_numpy = data_numpy.transpose();
|
||||
print_array(data_numpy);
|
||||
CPyObject Xp = data_numpy.ptr();
|
||||
auto [Xn, yn] = tensors2numpy(X, y);
|
||||
CPyObject Xp = Xn.ptr();
|
||||
std::cout << "PyClassifier:fit:Converting y to PyObject" << std::endl;
|
||||
auto y_numpy = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), p::make_tuple(n), p::make_tuple(sizeof(y.dtype()) * 2), p::object());
|
||||
print_array(y_numpy);
|
||||
CPyObject yp = y_numpy.ptr();
|
||||
print_array(yn);
|
||||
CPyObject yp = yn.ptr();
|
||||
std::cout << "PyClassifier:fit:Calling fit" << std::endl;
|
||||
pyWrap->fit(module, this->className, Xp, yp);
|
||||
return *this;
|
||||
}
|
||||
torch::Tensor PyClassifier::predict(torch::Tensor& X)
|
||||
{
|
||||
int m = X.size(0);
|
||||
int n = X.size(1);
|
||||
auto data_numpy = np::from_data(X.data_ptr(), np::dtype::get_builtin<float>(), p::make_tuple(m, n), p::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), p::object());
|
||||
data_numpy = data_numpy.transpose();
|
||||
print_array(data_numpy);
|
||||
CPyObject Xp = data_numpy.ptr();
|
||||
auto Xn = tensor2numpy(X);
|
||||
print_array(Xn);
|
||||
CPyObject Xp = Xn.ptr();
|
||||
auto PyResult = pyWrap->predict(module, className, Xp);
|
||||
auto result = torch::tensor({ 1,2,3 });
|
||||
return result;
|
||||
}
|
||||
double PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
std::cout << "Converting X to PyObject" << std::endl;
|
||||
std::cout << "X.defined() = " << X.defined() << std::endl;
|
||||
//std::cout << "X.pyobj() = " << X.pyobj() << std::endl;
|
||||
//PyObject* Xp = torch::utils::tensor_to_numpy(X);
|
||||
auto XX = X.transpose(0, 1);
|
||||
int m = XX.size(0);
|
||||
int n = XX.size(1);
|
||||
auto data_numpy = np::from_data(XX.data_ptr(), np::dtype::get_builtin<float>(), p::make_tuple(m, n), p::make_tuple(sizeof(XX.dtype()) * 2 * n, sizeof(XX.dtype()) * 2), p::object());
|
||||
print_array(data_numpy);
|
||||
CPyObject Xp = data_numpy.ptr();
|
||||
std::cout << "Converting y to PyObject" << std::endl;
|
||||
auto y_numpy = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), p::make_tuple(m), p::make_tuple(sizeof(y.dtype()) * 2), p::object());
|
||||
CPyObject yp = y_numpy.ptr();
|
||||
std::cout << "PyClassifier::Score:Converting X to PyObject" << std::endl;
|
||||
auto [Xn, yn] = tensors2numpy(X, y);
|
||||
CPyObject Xp = Xn.ptr();
|
||||
CPyObject yp = yn.ptr();
|
||||
print_array(yn);
|
||||
auto result = pyWrap->score(module, className, Xp, yp);
|
||||
return result;
|
||||
}
|
||||
|
Reference in New Issue
Block a user