Refactor singleton to manage cleanup
This commit is contained in:
@@ -1,8 +1,6 @@
|
||||
#include "PyClassifier.h"
|
||||
#include <boost/python/numpy.hpp>
|
||||
#include <torch/csrc/autograd/python_variable.h>
|
||||
#include <torch/csrc/utils/tensor_numpy.h>
|
||||
//#include "tensorflow/python/lib/core/py_func.h"
|
||||
#include <iostream>
|
||||
|
||||
namespace pywrap {
|
||||
@@ -13,35 +11,20 @@ namespace pywrap {
|
||||
pyWrap = PyWrap::GetInstance();
|
||||
pyWrap->importClass(module, className);
|
||||
}
|
||||
|
||||
PyClassifier::~PyClassifier()
|
||||
{
|
||||
std::cout << "Cleaning Classifier" << std::endl;
|
||||
pyWrap->clean(module, className);
|
||||
std::cout << "Classifier cleaned" << std::endl;
|
||||
}
|
||||
PyObject* PyClassifier::toPyObject(torch::Tensor& data_tensor)
|
||||
{
|
||||
|
||||
// return torch::utils::tensor_to_numpy(data_tensor);
|
||||
return THPVariable_Wrap(data_tensor);
|
||||
//auto data_numpy = np::from_data(data_tensor.data_ptr(), np::dtype::get_builtin<float>(), p::make_tuple(m, n), p::make_tuple(sizeof(data_tensor.dtype()) * 2 * n, sizeof(data_tensor.dtype()) * 2), p::object());
|
||||
// PyObject* numpyObject = data_numpy.ptr();
|
||||
|
||||
// return numpyObject;
|
||||
}
|
||||
// PyObject* PyClassifier::toPyObjecty(torch::Tensor& data_tensor)
|
||||
// {
|
||||
// //return THPVariable_Wrap(tensor);
|
||||
// auto y_numpy = np::from_data(data_tensor.data_ptr(), np::dtype::get_builtin<int32_t>(), p::make_tuple(m), p::make_tuple(sizeof(data_tensor.dtype()) * 2), p::object());
|
||||
// PyObject* numpyObject = y_numpy.ptr();
|
||||
|
||||
// }
|
||||
std::string PyClassifier::version()
|
||||
{
|
||||
return pyWrap->version(module, className);
|
||||
}
|
||||
|
||||
std::string PyClassifier::graph()
|
||||
{
|
||||
return pyWrap->graph(module, className);
|
||||
}
|
||||
std::string PyClassifier::callMethodString(const std::string& method)
|
||||
{
|
||||
return pyWrap->callMethodString(module, className, method);
|
||||
@@ -53,28 +36,32 @@ namespace pywrap {
|
||||
}
|
||||
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
std::cout << "Converting X to PyObject" << std::endl;
|
||||
std::cout << "PyClassifier:fit:Converting X to PyObject" << std::endl;
|
||||
std::cout << "X.defined() = " << X.defined() << std::endl;
|
||||
//std::cout << "X.pyobj() = " << X.pyobj() << std::endl;
|
||||
//PyObject* Xp = torch::utils::tensor_to_numpy(X);
|
||||
auto XX = X.transpose(0, 1);
|
||||
int m = XX.size(0);
|
||||
int n = XX.size(1);
|
||||
auto data_numpy = np::from_data(XX.data_ptr(), np::dtype::get_builtin<float>(), p::make_tuple(m, n), p::make_tuple(sizeof(XX.dtype()) * 2 * n, sizeof(XX.dtype()) * 2), p::object());
|
||||
int m = X.size(0);
|
||||
int n = X.size(1);
|
||||
auto data_numpy = np::from_data(X.data_ptr(), np::dtype::get_builtin<float>(), p::make_tuple(m, n), p::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), p::object());
|
||||
data_numpy = data_numpy.transpose();
|
||||
print_array(data_numpy);
|
||||
CPyObject Xp = data_numpy.ptr();
|
||||
std::cout << "Converting y to PyObject" << std::endl;
|
||||
auto y_numpy = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), p::make_tuple(m), p::make_tuple(sizeof(y.dtype()) * 2), p::object());
|
||||
std::cout << "PyClassifier:fit:Converting y to PyObject" << std::endl;
|
||||
auto y_numpy = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), p::make_tuple(n), p::make_tuple(sizeof(y.dtype()) * 2), p::object());
|
||||
print_array(y_numpy);
|
||||
CPyObject yp = y_numpy.ptr();
|
||||
std::cout << "Calling fit" << std::endl;
|
||||
std::cout << "PyClassifier:fit:Calling fit" << std::endl;
|
||||
pyWrap->fit(module, this->className, Xp, yp);
|
||||
return *this;
|
||||
}
|
||||
torch::Tensor PyClassifier::predict(torch::Tensor& X)
|
||||
{
|
||||
CPyObject Xp = toPyObject(X);
|
||||
int m = X.size(0);
|
||||
int n = X.size(1);
|
||||
auto data_numpy = np::from_data(X.data_ptr(), np::dtype::get_builtin<float>(), p::make_tuple(m, n), p::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), p::object());
|
||||
data_numpy = data_numpy.transpose();
|
||||
print_array(data_numpy);
|
||||
CPyObject Xp = data_numpy.ptr();
|
||||
auto PyResult = pyWrap->predict(module, className, Xp);
|
||||
auto result = THPVariable_Unpack(PyResult);
|
||||
auto result = torch::tensor({ 1,2,3 });
|
||||
return result;
|
||||
}
|
||||
double PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
|
||||
@@ -95,5 +82,4 @@ namespace pywrap {
|
||||
auto result = pyWrap->score(module, className, Xp, yp);
|
||||
return result;
|
||||
}
|
||||
|
||||
} /* namespace PyWrap */
|
||||
} /* namespace pywrap */
|
@@ -15,9 +15,9 @@ namespace pywrap {
|
||||
torch::Tensor predict(torch::Tensor& X);
|
||||
double score(torch::Tensor& X, torch::Tensor& y);
|
||||
std::string version();
|
||||
std::string graph();
|
||||
std::string callMethodString(const std::string& method);
|
||||
private:
|
||||
PyObject* toPyObject(torch::Tensor& tensor);
|
||||
PyWrap* pyWrap;
|
||||
std::string module;
|
||||
std::string className;
|
||||
|
@@ -3,7 +3,7 @@
|
||||
#pragma once
|
||||
// Code taken and adapted from
|
||||
// https ://www.codeproject.com/Articles/820116/Embedding-Python-program-in-a-C-Cplusplus-code
|
||||
|
||||
#include <iostream>
|
||||
#include <Python.h>
|
||||
#include <boost/python/numpy.hpp>
|
||||
|
||||
@@ -14,12 +14,14 @@ namespace pywrap {
|
||||
public:
|
||||
CPyInstance()
|
||||
{
|
||||
std::cout << "PyHelper:Initializing Python interpreter" << std::endl;
|
||||
Py_Initialize();
|
||||
np::initialize();
|
||||
}
|
||||
|
||||
~CPyInstance()
|
||||
{
|
||||
std::cout << "PyHelper:Finalizing Python interpreter" << std::endl;
|
||||
Py_Finalize();
|
||||
}
|
||||
};
|
||||
|
185
src/PyWrap.cc
185
src/PyWrap.cc
@@ -10,6 +10,7 @@ namespace pywrap {
|
||||
namespace np = boost::python::numpy;
|
||||
PyWrap* PyWrap::wrapper = nullptr;
|
||||
std::mutex PyWrap::mutex;
|
||||
CPyInstance* PyWrap::pyInstance = nullptr;
|
||||
|
||||
PyWrap* PyWrap::GetInstance()
|
||||
{
|
||||
@@ -17,27 +18,23 @@ namespace pywrap {
|
||||
if (wrapper == nullptr) {
|
||||
std::cout << "Creando instancia" << std::endl;
|
||||
wrapper = new PyWrap();
|
||||
pyInstance = new CPyInstance();
|
||||
std::cout << "Instancia creada" << std::endl;
|
||||
}
|
||||
return wrapper;
|
||||
}
|
||||
|
||||
PyWrap::PyWrap()
|
||||
void PyWrap::RemoveInstance()
|
||||
{
|
||||
PyStatus status = initPython();
|
||||
if (PyStatus_Exception(status)) {
|
||||
throw std::runtime_error("Error initializing Python");
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
if (wrapper != nullptr) {
|
||||
std::cout << "Liberando instancia" << std::endl;
|
||||
delete pyInstance;
|
||||
pyInstance = nullptr;
|
||||
delete wrapper;
|
||||
wrapper = nullptr;
|
||||
std::cout << "Instancia liberada" << std::endl;
|
||||
}
|
||||
np::initialize();
|
||||
}
|
||||
|
||||
PyWrap::~PyWrap()
|
||||
{
|
||||
std::cout << "Destruyendo PyWrap" << std::endl;
|
||||
Py_Finalize();
|
||||
std::cout << "PyWrap destruido" << std::endl;
|
||||
}
|
||||
|
||||
void PyWrap::importClass(const std::string& moduleName, const std::string& className)
|
||||
{
|
||||
std::cout << "Importando clase" << std::endl;
|
||||
@@ -61,7 +58,6 @@ namespace pywrap {
|
||||
moduleClassMap[{moduleName, className}] = { module, classObject, instance };
|
||||
std::cout << "Clase importada" << std::endl;
|
||||
}
|
||||
|
||||
void PyWrap::clean(const std::string& moduleName, const std::string& className)
|
||||
{
|
||||
std::cout << "Limpiando" << std::endl;
|
||||
@@ -71,14 +67,20 @@ namespace pywrap {
|
||||
}
|
||||
std::cout << "--> Limpiando" << std::endl;
|
||||
moduleClassMap.erase(result);
|
||||
if (PyErr_Occurred()) {
|
||||
PyErr_Print();
|
||||
errorAbort("Error cleaning module " + moduleName + " and class " + className);
|
||||
}
|
||||
if (moduleClassMap.empty()) {
|
||||
RemoveInstance();
|
||||
}
|
||||
std::cout << "Limpieza terminada" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
void PyWrap::errorAbort(const std::string& message)
|
||||
{
|
||||
std::cout << message << std::endl;
|
||||
PyErr_Print();
|
||||
RemoveInstance();
|
||||
exit(1);
|
||||
}
|
||||
PyObject* PyWrap::getClass(const std::string& moduleName, const std::string& className)
|
||||
@@ -93,28 +95,45 @@ namespace pywrap {
|
||||
std::string PyWrap::callMethodString(const std::string& moduleName, const std::string& className, const std::string& method)
|
||||
{
|
||||
std::cout << "Llamando método " << method << std::endl;
|
||||
CPyObject instance = getClass(moduleName, className);
|
||||
CPyObject result;
|
||||
if (!(result = PyObject_CallMethod(instance, method.c_str(), NULL)))
|
||||
errorAbort("Couldn't call method " + method);
|
||||
|
||||
PyObject* instance = getClass(moduleName, className);
|
||||
PyObject* result;
|
||||
try {
|
||||
if (!(result = PyObject_CallMethod(instance, method.c_str(), NULL)))
|
||||
errorAbort("Couldn't call method " + method);
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::cerr << e.what() << '\n';
|
||||
RemoveInstance();
|
||||
exit(1);
|
||||
}
|
||||
std::string value = PyUnicode_AsUTF8(result);
|
||||
std::cout << "Result: " << value << std::endl;
|
||||
Py_DECREF(result);
|
||||
return value;
|
||||
}
|
||||
std::string PyWrap::version(const std::string& moduleName, const std::string& className)
|
||||
{
|
||||
return callMethodString(moduleName, className, "version");
|
||||
}
|
||||
|
||||
std::string PyWrap::graph(const std::string& moduleName, const std::string& className)
|
||||
{
|
||||
return callMethodString(moduleName, className, "graph");
|
||||
}
|
||||
void PyWrap::fit(const std::string& moduleName, const std::string& className, CPyObject& X, CPyObject& y)
|
||||
{
|
||||
std::cout << "Llamando método fit" << std::endl;
|
||||
CPyObject instance = getClass(moduleName, className);
|
||||
CPyObject result;
|
||||
std::string method = "fit";
|
||||
if (!(result = PyObject_CallMethodObjArgs(instance, PyUnicode_FromString(method.c_str()), X, y, NULL)))
|
||||
errorAbort("Couldn't call method fit");
|
||||
try {
|
||||
if (!(result = PyObject_CallMethodObjArgs(instance, PyUnicode_FromString(method.c_str()), X, y, NULL)))
|
||||
errorAbort("Couldn't call method fit");
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::cerr << e.what() << '\n';
|
||||
RemoveInstance();
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
CPyObject PyWrap::predict(const std::string& moduleName, const std::string& className, CPyObject& X)
|
||||
{
|
||||
@@ -122,9 +141,16 @@ namespace pywrap {
|
||||
CPyObject instance = getClass(moduleName, className);
|
||||
CPyObject result;
|
||||
std::string method = "predict";
|
||||
if (!(result = PyObject_CallMethodObjArgs(instance, PyUnicode_FromString(method.c_str()), X, NULL)))
|
||||
errorAbort("Couldn't call method predict");
|
||||
return result; // The caller has to decref the result
|
||||
try {
|
||||
if (!(result = PyObject_CallMethodObjArgs(instance, PyUnicode_FromString(method.c_str()), X, NULL)))
|
||||
errorAbort("Couldn't call method predict");
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::cerr << e.what() << '\n';
|
||||
RemoveInstance();
|
||||
exit(1);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
double PyWrap::score(const std::string& moduleName, const std::string& className, CPyObject& X, CPyObject& y)
|
||||
{
|
||||
@@ -132,100 +158,15 @@ namespace pywrap {
|
||||
CPyObject instance = getClass(moduleName, className);
|
||||
CPyObject result;
|
||||
std::string method = "score";
|
||||
if (!(result = PyObject_CallMethodObjArgs(instance, PyUnicode_FromString(method.c_str()), X, y, NULL)))
|
||||
errorAbort("Couldn't call method score");
|
||||
try {
|
||||
if (!(result = PyObject_CallMethodObjArgs(instance, PyUnicode_FromString(method.c_str()), X, y, NULL)))
|
||||
errorAbort("Couldn't call method score");
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::cerr << e.what() << '\n';
|
||||
RemoveInstance();
|
||||
exit(1);
|
||||
}
|
||||
return PyFloat_AsDouble(result);
|
||||
}
|
||||
// void PyWrap::doCommand2()
|
||||
// {
|
||||
// PyObject* list = Py_BuildValue("[s]", "Stree");
|
||||
// // PyObject* module = PyImport_ImportModuleEx("stree", NULL, NULL, list);
|
||||
// PyObject* module = PyImport_ImportModule("stree");
|
||||
// if (PyErr_Occurred()) {
|
||||
// PyErr_Print();
|
||||
// cout << "Fails to obtain the module.\n";
|
||||
// return;
|
||||
// }
|
||||
// cout << "Antes de empezar" << endl;
|
||||
// if (module != nullptr) {
|
||||
// cout << "Lo consiguió!!!" << endl;
|
||||
// // dict is a borrowed reference.
|
||||
// auto pdict = PyModule_GetDict(module);
|
||||
// if (pdict == nullptr) {
|
||||
// cout << "Fails to get the dictionary.\n";
|
||||
// return;
|
||||
// }
|
||||
// Py_DECREF(module);
|
||||
// PyObject* pKeys = PyDict_Keys(pdict);
|
||||
// PyObject* pValues = PyDict_Values(pdict);
|
||||
// map<string, string> my_map;
|
||||
// cout << "size: " << PyDict_Size(pdict) << endl;
|
||||
// char* cstr_key = new char[100];
|
||||
// char* cstr_value = new char[500];
|
||||
// for (Py_ssize_t i = 0; i < PyDict_Size(pdict); ++i) {
|
||||
// PyArg_Parse(PyList_GetItem(pKeys, i), "s", &cstr_key);
|
||||
// PyArg_Parse(PyList_GetItem(pValues, i), "s", &cstr_value);
|
||||
// //cout << cstr<< " "<< cstr2 <<endl;
|
||||
// my_map.emplace(cstr_key, cstr_value);
|
||||
// }
|
||||
// for (auto x : my_map) {
|
||||
// cout << x.first << " : " << x.second << endl;
|
||||
// }
|
||||
// // Builds the name of a callable class
|
||||
// const char* class_name = "Stree";
|
||||
// auto python_class = PyDict_GetItemString(pdict, class_name);
|
||||
// // if (PyErr_Occurred()) {
|
||||
// // PyErr_Print();
|
||||
// // cout << "Fails to obtain the class.\n";
|
||||
// // return;
|
||||
// // }
|
||||
// if (python_class == nullptr) {
|
||||
// cout << "Fails to get the Python class.\n";
|
||||
// return;
|
||||
// }
|
||||
// Py_DECREF(pdict);
|
||||
// cout << "Clase: " << python_class << endl;
|
||||
// PyObject* object;
|
||||
// // Creates an instance of the class
|
||||
// if (PyCallable_Check(python_class)) {
|
||||
// cout << "Es callable" << endl;
|
||||
// object = PyObject_CallObject(python_class, NULL);
|
||||
// Py_DECREF(python_class);
|
||||
// } else {
|
||||
// std::cout << "Cannot instantiate the Python class" << endl;
|
||||
// Py_DECREF(python_class);
|
||||
// return;
|
||||
// }
|
||||
// if (PyErr_Occurred()) {
|
||||
// PyErr_Print();
|
||||
// cout << "Fails to create the Python object.\n";
|
||||
// return;
|
||||
// }
|
||||
// auto val = PyObject_CallMethod(object, "version", NULL);
|
||||
// if (val != nullptr) {
|
||||
// cout << "Valor: " << val << endl;
|
||||
// } else {
|
||||
// cout << "No se pudo ejecutar" << endl;
|
||||
// }
|
||||
|
||||
// } else {
|
||||
// cout << "No lo consiguió :(" << endl;
|
||||
// }
|
||||
// Py_RunMain();
|
||||
// }
|
||||
|
||||
PyStatus PyWrap::initPython()
|
||||
{
|
||||
PyStatus status;
|
||||
PyConfig config;
|
||||
PyConfig_InitPythonConfig(&config);
|
||||
config.isolated = 0;
|
||||
status = PyConfig_Read(&config);
|
||||
if (PyStatus_Exception(status)) {
|
||||
errorAbort("Error reading config");
|
||||
}
|
||||
status = Py_InitializeFromConfig(&config);
|
||||
PyConfig_Clear(&config);
|
||||
return status;
|
||||
}
|
||||
}
|
25
src/PyWrap.h
25
src/PyWrap.h
@@ -6,45 +6,36 @@
|
||||
#include <tuple>
|
||||
#include <mutex>
|
||||
#include "PyHelper.hpp"
|
||||
#pragma once
|
||||
|
||||
|
||||
namespace pywrap {
|
||||
/*
|
||||
Singleton class to handle Python interpreter.
|
||||
Singleton class to handle Python/numpy interpreter.
|
||||
*/
|
||||
class PyWrap {
|
||||
public:
|
||||
PyWrap(PyWrap& other) = delete;
|
||||
static PyWrap* GetInstance();
|
||||
static void RemoveInstance();
|
||||
void operator=(const PyWrap&) = delete;
|
||||
~PyWrap();
|
||||
// template<typename T> T returnMethod(PyObject* result);
|
||||
// template<std::string> std::string returnMethod(PyObject* result);
|
||||
// template<int> int returnMethod(PyObject* result);
|
||||
// template<bool> bool returnMethod(PyObject* result);
|
||||
// template<torch::Tensor> torch::Tensor returnMethod(PyObject* result)
|
||||
// {
|
||||
// // PyObject* THPVariable_Wrap(at::Tensor t);
|
||||
// // at::Tensor& THPVariable_Unpack(PyObject * obj);
|
||||
// return THPVariable_Unpack(result);
|
||||
// };
|
||||
// PyObject* callMethodArgs(const std::string& moduleName, const std::string& className, const std::string& method, PyObject* args);
|
||||
~PyWrap() = default;
|
||||
void fit(const std::string& moduleName, const std::string& className, CPyObject& X, CPyObject& y);
|
||||
CPyObject predict(const std::string& moduleName, const std::string& className, CPyObject& X);
|
||||
std::string callMethodString(const std::string& moduleName, const std::string& className, const std::string& method);
|
||||
std::string version(const std::string& moduleName, const std::string& className);
|
||||
std::string graph(const std::string& moduleName, const std::string& className);
|
||||
double score(const std::string& moduleName, const std::string& className, CPyObject& X, CPyObject& y);
|
||||
void clean(const std::string& moduleName, const std::string& className);
|
||||
void importClass(const std::string& moduleName, const std::string& className);
|
||||
// void doCommand2();
|
||||
private:
|
||||
PyWrap();
|
||||
PyWrap() = default;
|
||||
PyObject* getClass(const std::string& moduleName, const std::string& className);
|
||||
void errorAbort(const std::string& message);
|
||||
PyStatus initPython();
|
||||
static CPyInstance* pyInstance;
|
||||
static PyWrap* wrapper;
|
||||
static std::mutex mutex;
|
||||
std::map<std::pair<std::string, std::string>, std::tuple<CPyObject, CPyObject, CPyObject>> moduleClassMap;
|
||||
};
|
||||
} /* namespace python */
|
||||
} /* namespace pywrap */
|
||||
#endif /* PYWRAP_H */
|
@@ -2,5 +2,9 @@
|
||||
|
||||
namespace pywrap {
|
||||
|
||||
|
||||
std::string STree::graph()
|
||||
{
|
||||
// return callMethodString("graph");
|
||||
return PyClassifier::graph();
|
||||
}
|
||||
} /* namespace pywrap */
|
@@ -7,6 +7,7 @@ namespace pywrap {
|
||||
public:
|
||||
STree() : PyClassifier("stree", "Stree") {};
|
||||
~STree() = default;
|
||||
std::string graph();
|
||||
};
|
||||
|
||||
} /* namespace pywrap */
|
||||
|
@@ -13,13 +13,11 @@ namespace pywrap {
|
||||
PyErr_Print();
|
||||
exit(1);
|
||||
}
|
||||
|
||||
void print_array(np::ndarray& array)
|
||||
{
|
||||
std::cout << "Array: " << std::endl;
|
||||
std::cout << p::extract<char const*>(p::str(array)) << std::endl;
|
||||
}
|
||||
|
||||
np::ndarray to_numpy_matrix(torch::Tensor& input_data, np::dtype numpy_dtype)
|
||||
{
|
||||
p::tuple shape = p::make_tuple(input_data.size(0), input_data.size(1));
|
||||
@@ -135,7 +133,6 @@ int main(int argc, char** argv)
|
||||
CPyObject result;
|
||||
if (!(result = PyObject_CallMethod(instance, method.c_str(), NULL)))
|
||||
errorAbort("Couldn't call method " + method);
|
||||
|
||||
std::string value = PyUnicode_AsUTF8(result);
|
||||
cout << "Version: " << value << endl;
|
||||
cout << "Calling fit" << endl;
|
||||
|
@@ -46,7 +46,8 @@ int main(int argc, char* argv[])
|
||||
auto stree = pywrap::STree();
|
||||
stree.version();
|
||||
auto svc = pywrap::SVC();
|
||||
svc.version();
|
||||
//svc.version();
|
||||
cout << "Graph: " << stree.graph() << endl;
|
||||
stree.version();
|
||||
cout << string(80, '-') << endl;
|
||||
cout << "X: " << X.sizes() << endl;
|
||||
|
Reference in New Issue
Block a user