Passing numpy working partially

This commit is contained in:
2023-11-03 22:00:46 +01:00
parent 28bbe18115
commit bec04bc3a6
8 changed files with 283 additions and 80 deletions

View File

@@ -6,6 +6,7 @@ set(CMAKE_CXX_STANDARD_REQUIRED ON)
find_package(Python3 3.11...3.11.9 COMPONENTS Interpreter Development REQUIRED)
find_package(Torch REQUIRED)
find_package(Boost REQUIRED COMPONENTS python3 numpy3)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")

View File

@@ -4,7 +4,7 @@ SHELL := /bin/bash
f_release = build_release
f_debug = build_debug
app_targets = main
app_targets = main example
test_targets = unit_tests_bayesnet unit_tests_platform
n_procs = -j 16

View File

@@ -1,8 +1,9 @@
include_directories(${PyWrap_SOURCE_DIR}/lib/Files)
include_directories(${Python3_INCLUDE_DIRS})
include_directories(${TORCH_INCLUDE_DIRS})
add_executable(main main.cc STree.cc SVC.cc PyClassifier.cc PyWrap.cc)
add_executable(example example.cpp)
target_link_libraries(main ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} ArffFiles)
target_link_libraries(example "${TORCH_LIBRARIES}" ArffFiles)
target_link_libraries(main ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy ArffFiles)
target_link_libraries(example ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" Boost::boost Boost::python Boost::numpy ArffFiles)

View File

@@ -1,10 +1,13 @@
#include "PyClassifier.h"
#include <boost/python/numpy.hpp>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/tensor_numpy.h>
//#include "tensorflow/python/lib/core/py_func.h"
#include <iostream>
namespace pywrap {
namespace p = boost::python;
namespace np = boost::python::numpy;
PyClassifier::PyClassifier(const std::string& module, const std::string& className) : module(module), className(className)
{
pyWrap = PyWrap::GetInstance();
@@ -15,11 +18,23 @@ namespace pywrap {
{
pyWrap->clean(module, className);
}
PyObject* PyClassifier::toPyObject(torch::Tensor& tensor)
PyObject* PyClassifier::toPyObject(torch::Tensor& data_tensor)
{
return torch::utils::tensor_to_numpy(tensor);
//return THPVariable_Wrap(tensor);
// return torch::utils::tensor_to_numpy(data_tensor);
return THPVariable_Wrap(data_tensor);
//auto data_numpy = np::from_data(data_tensor.data_ptr(), np::dtype::get_builtin<float>(), p::make_tuple(m, n), p::make_tuple(sizeof(data_tensor.dtype()) * 2 * n, sizeof(data_tensor.dtype()) * 2), p::object());
// PyObject* numpyObject = data_numpy.ptr();
// return numpyObject;
}
// PyObject* PyClassifier::toPyObjecty(torch::Tensor& data_tensor)
// {
// //return THPVariable_Wrap(tensor);
// auto y_numpy = np::from_data(data_tensor.data_ptr(), np::dtype::get_builtin<int32_t>(), p::make_tuple(m), p::make_tuple(sizeof(data_tensor.dtype()) * 2), p::object());
// PyObject* numpyObject = y_numpy.ptr();
// }
std::string PyClassifier::version()
{
return pyWrap->version(module, className);
@@ -29,16 +44,28 @@ namespace pywrap {
{
return pyWrap->callMethodString(module, className, method);
}
void print_array(np::ndarray& array)
{
std::cout << "Array: " << std::endl;
std::cout << p::extract<char const*>(p::str(array)) << std::endl;
}
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
{
std::cout << "Converting X to PyObject" << std::endl;
std::cout << "X.defined() = " << X.defined() << std::endl;
//std::cout << "X.pyobj() = " << X.pyobj() << std::endl;
PyObject* Xp = toPyObject(X);
//PyObject* Xp = torch::utils::tensor_to_numpy(X);
auto XX = X.transpose(0, 1);
int m = XX.size(0);
int n = XX.size(1);
auto data_numpy = np::from_data(XX.data_ptr(), np::dtype::get_builtin<float>(), p::make_tuple(m, n), p::make_tuple(sizeof(XX.dtype()) * 2 * n, sizeof(XX.dtype()) * 2), p::object());
print_array(data_numpy);
PyObject* Xp = data_numpy.ptr();
std::cout << "Converting y to PyObject" << std::endl;
PyObject* yp = toPyObject(y);
auto y_numpy = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), p::make_tuple(m), p::make_tuple(sizeof(y.dtype()) * 2), p::object());
PyObject* yp = y_numpy.ptr();
std::cout << "Calling fit" << std::endl;
pyWrap->fit(module, className, Xp, yp);
pyWrap->fit(module, this->className, Xp, yp);
Py_DECREF(Xp);
Py_DECREF(yp);
return *this;
@@ -54,8 +81,19 @@ namespace pywrap {
}
double PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
{
PyObject* Xp = toPyObject(X);
PyObject* yp = toPyObject(y);
std::cout << "Converting X to PyObject" << std::endl;
std::cout << "X.defined() = " << X.defined() << std::endl;
//std::cout << "X.pyobj() = " << X.pyobj() << std::endl;
//PyObject* Xp = torch::utils::tensor_to_numpy(X);
auto XX = X.transpose(0, 1);
int m = XX.size(0);
int n = XX.size(1);
auto data_numpy = np::from_data(XX.data_ptr(), np::dtype::get_builtin<float>(), p::make_tuple(m, n), p::make_tuple(sizeof(XX.dtype()) * 2 * n, sizeof(XX.dtype()) * 2), p::object());
print_array(data_numpy);
PyObject* Xp = data_numpy.ptr();
std::cout << "Converting y to PyObject" << std::endl;
auto y_numpy = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), p::make_tuple(m), p::make_tuple(sizeof(y.dtype()) * 2), p::object());
PyObject* yp = y_numpy.ptr();
auto result = pyWrap->score(module, className, Xp, yp);
Py_DECREF(Xp);
Py_DECREF(yp);

94
src/PyHelper.hpp Normal file
View File

@@ -0,0 +1,94 @@
#ifndef PYHELPER_HPP
#define PYHELPER_HPP
#pragma once
#include <Python.h>
class CPyInstance {
public:
CPyInstance()
{
Py_Initialize();
}
~CPyInstance()
{
Py_Finalize();
}
};
class CPyObject {
private:
PyObject* p;
public:
CPyObject() : p(NULL)
{
}
CPyObject(PyObject* _p) : p(_p)
{
}
~CPyObject()
{
Release();
}
PyObject* getObject()
{
return p;
}
PyObject* setObject(PyObject* _p)
{
return (p = _p);
}
PyObject* AddRef()
{
if (p) {
Py_INCREF(p);
}
return p;
}
void Release()
{
if (p) {
Py_DECREF(p);
}
p = NULL;
}
PyObject* operator ->()
{
return p;
}
bool is()
{
return p ? true : false;
}
operator PyObject* ()
{
return p;
}
PyObject* operator = (PyObject* pp)
{
p = pp;
return p;
}
operator bool()
{
return p ? true : false;
}
};
#endif

View File

@@ -4,8 +4,11 @@
#include <iostream>
#include <string>
#include <map>
#include <boost/python/numpy.hpp>
#include "PyHelper.hpp"
namespace pywrap {
namespace np = boost::python::numpy;
PyWrap* PyWrap::wrapper = nullptr;
std::mutex PyWrap::mutex;
@@ -26,7 +29,17 @@ namespace pywrap {
if (PyStatus_Exception(status)) {
throw std::runtime_error("Error initializing Python");
}
np::initialize();
}
PyWrap::~PyWrap()
{
for (const auto& item : moduleClassMap) {
Py_DECREF(std::get<0>(item.second));
Py_DECREF(std::get<1>(item.second));
Py_DECREF(std::get<2>(item.second));
}
Py_Finalize();
}
void PyWrap::importClass(const std::string& moduleName, const std::string& className)
@@ -68,18 +81,10 @@ namespace pywrap {
std::cout << "Limpieza terminada" << std::endl;
}
PyWrap::~PyWrap()
{
for (const auto& item : moduleClassMap) {
Py_DECREF(std::get<0>(item.second));
Py_DECREF(std::get<1>(item.second));
Py_DECREF(std::get<2>(item.second));
}
Py_Finalize();
}
void PyWrap::errorAbort(const std::string& message)
{
std::cerr << message << std::endl;
std::cout << message << std::endl;
PyErr_Print();
exit(1);
}
@@ -115,9 +120,8 @@ namespace pywrap {
std::cout << "Llamando método fit" << std::endl;
PyObject* instance = getClass(moduleName, className);
PyObject* result;
const char method[] = "fit";
if (!(result = PyObject_CallMethodObjArgs(instance, PyBytes_FromString(method), X, y, NULL)))
std::string method = "fit";
if (!(result = PyObject_CallMethodObjArgs(instance, PyUnicode_FromString(method.c_str()), X, y, NULL)))
errorAbort("Couldn't call method fit");
Py_DECREF(result);
}
@@ -126,8 +130,8 @@ namespace pywrap {
std::cout << "Llamando método predict" << std::endl;
PyObject* instance = getClass(moduleName, className);
PyObject* result;
const char method[] = "predict";
if (!(result = PyObject_CallMethodObjArgs(instance, PyBytes_FromString(method), X, NULL)))
std::string method = "predict";
if (!(result = PyObject_CallMethodObjArgs(instance, PyUnicode_FromString(method.c_str()), X, NULL)))
errorAbort("Couldn't call method predict");
return result; // The caller has to decref the result
}
@@ -136,8 +140,8 @@ namespace pywrap {
std::cout << "Llamando método score" << std::endl;
PyObject* instance = getClass(moduleName, className);
PyObject* result;
const char method[] = "score";
if (!(result = PyObject_CallMethodObjArgs(instance, PyBytes_FromString(method), X, y, NULL)))
std::string method = "score";
if (!(result = PyObject_CallMethodObjArgs(instance, PyUnicode_FromString(method.c_str()), X, y, NULL)))
errorAbort("Couldn't call method score");
return PyFloat_AsDouble(result);
}

View File

@@ -1,60 +1,123 @@
#include <boost/python/numpy.hpp>
#include <string>
#include <iostream>
#include <torch/torch.h>
#include "ArffFiles.h"
#include<string>
#include<iostream>
namespace p = boost::python;
namespace np = boost::python::numpy;
using namespace std;
using namespace torch;
class Test {
public:
Test(const string& c) : c(c) {};
~Test() { std::cout << "Destructor" << std::endl; };
template<typename T>
T callMethod(const T& parameter)
{
std::cout << "Llamando a metodo" << std::endl;
return parameter;
}
private:
string c;
};
tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& name, bool class_last)
void errorAbort(const std::string& message)
{
auto handler = ArffFiles();
handler.load(static_cast<string>(name) + ".arff", class_last);
// Get Dataset X, y
vector<vector<float>> X = handler.getX();
vector<int> y = handler.getY();
// // Get className & Features
auto className = handler.getClassName();
vector<string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
torch::Tensor Xd;
auto states = map<string, vector<int>>();
auto yt = torch::tensor(y, torch::kInt32);
Xd = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kFloat32);
for (int i = 0; i < features.size(); ++i) {
Xd.index_put_({ i, "..." }, torch::tensor(X[i], torch::kFloat32));
}
return make_tuple(Xd, yt, features, className, states);
std::cerr << message << std::endl;
PyErr_Print();
exit(1);
}
int main()
void print_array(np::ndarray& array)
{
Test t("hola");
cout << t.callMethod<string>("hola") << endl;
cout << t.callMethod<int>(1) << endl;
cout << t.callMethod<double>(7.3) << endl;
vector<vector<float>> X;
vector<int> y = { 1, 2, 3 };
X.push_back({ 1.1, 2.2, 3.3 });
vector<float> v = { 1.1, 2.2, 3.3 };
torch::Tensor matrix = torch::tensor(X[0], torch::kFloat32);
cout << "X:" << matrix << endl;
cout << "y:" << torch::tensor(y, torch::kInt32) << endl;
std::cout << "Array: " << std::endl;
std::cout << p::extract<char const*>(p::str(array)) << std::endl;
}
np::ndarray to_numpy_matrix(torch::Tensor& input_data, np::dtype numpy_dtype)
{
p::tuple shape = p::make_tuple(input_data.size(0), input_data.size(1));
auto tensor_dtype = input_data.dtype();
p::tuple stride = p::make_tuple(sizeof(tensor_dtype) * input_data.size(1), sizeof(tensor_dtype));
auto dito = input_data.transpose(1, 0);
np::ndarray result = np::from_data(dito.data_ptr(), numpy_dtype, shape, stride, p::object());
return result;
}
np::ndarray to_numpy_vector(torch::Tensor& input_data, np::dtype numpy_dtype)
{
p::tuple shape = p::make_tuple(input_data.size(0));
auto tensor_dtype = input_data.dtype();
p::tuple stride = p::make_tuple(sizeof(tensor_dtype), sizeof(tensor_dtype));
np::ndarray result = np::from_data(input_data.data_ptr(), numpy_dtype, shape, stride, p::object());
return result;
}
void flat()
{
double data[][4] = { {0.1, 0.2, 0.3, 0.4} , { 0.5, 0.6, 0.7, 0.8 }, { 0.9, 0.11, 0.12, 0.13 }, { 0.14, 0.15, 0.16, 0.17 }, { 0.18, 0.19, 0.21, 0.22 }, { 0.23, 0.24, 0.25, 0.26 }, { 0.27, 0.28, 0.29, 0.31 } };
int labels[] = { 0, 1, 0, 1 , 0, 0, 1 };
// cout << "Array data: (" << m << ", " << n << ") " << endl;
// for (int i = 0; i < m; ++i) {
// cout << "[ ";
// for (int j = 0; j < n; ++j) {
// cout << setw(4) << std::setprecision(2) << fixed << data[i][j] << " ";
// }
// cout << "]" << endl;
// }
// cout << "Array labels: " << endl;
// for (int i = 0; i < m; ++i) {
// cout << labels[i] << " ";
// }
// cout << endl;
// auto data_numpy = np::from_data(data, np::dtype::get_builtin<double>(), p::make_tuple(m, n), p::make_tuple(sizeof(double) * n, sizeof(double)), p::object());
// auto y_numpy = np::from_data(labels, np::dtype::get_builtin<int>(), p::make_tuple(m), p::make_tuple(sizeof(int)), p::object());
}
int main(int argc, char** argv)
{
Py_Initialize();
np::initialize();
int m = 7;
int n = 4;
// torch::Tensor data_tensor = torch::rand({ m, n }, torch::kFloat64);
torch::Tensor data_tensor = torch::tensor({ {0.1, 0.2, 0.3, 0.4} , { 0.5, 0.6, 0.7, 0.8 }, { 0.9, 0.11, 0.12, 0.13 }, { 0.14, 0.15, 0.16, 0.17 }, { 0.18, 0.19, 0.21, 0.22 }, { 0.23, 0.24, 0.25, 0.26 }, { 0.27, 0.28, 0.29, 0.31 } }, torch::kFloat32);
// torch::Tensor y_label = torch::randint(0, 2, { m }, torch::kInt16);
torch::Tensor y_label = torch::tensor({ 17, 18, 19, 20 , 21, 22, 23 }, torch::kInt32);
cout << "Tensor data: (" << data_tensor.size(0) << ", " << data_tensor.size(1) << ") " << endl << data_tensor << endl;
cout << "Tensor data sizes: " << data_tensor.sizes() << endl;
cout << "Tensor labels: " << y_label << endl;
cout << "Tensor labels sizes: " << y_label.sizes() << endl;
auto data_numpy = np::from_data(data_tensor.data_ptr(), np::dtype::get_builtin<float>(), p::make_tuple(m, n), p::make_tuple(sizeof(data_tensor.dtype()) * 2 * n, sizeof(data_tensor.dtype()) * 2), p::object());
auto y_numpy = np::from_data(y_label.data_ptr(), np::dtype::get_builtin<int32_t>(), p::make_tuple(m), p::make_tuple(sizeof(y_label.dtype()) * 2), p::object());
//auto y_numpy = np::from_data(y_label.data_ptr(), np::dtype::get_builtin<int64_t>(), p::make_tuple(m), p::make_tuple(sizeof(y_label.dtype()) * 4), p::object());
cout << "Numpy array data: " << endl;
print_array(data_numpy);
cout << "Numpy array labels: " << endl;
print_array(y_numpy);
cout << "primero" << endl;
PyObject* p = data_numpy.ptr();
PyObject* yp = y_numpy.ptr();
cout << "segundo" << endl;
string moduleName = "stree";
string className = "Stree";
string method = "version";
PyObject* module = PyImport_ImportModule(moduleName.c_str());
if (PyErr_Occurred()) {
errorAbort("Could't import module " + moduleName);
}
PyObject* classObject = PyObject_GetAttrString(module, className.c_str());
if (PyErr_Occurred()) {
errorAbort("Couldn't find class " + className);
}
PyObject* instance = PyObject_CallObject(classObject, NULL);
if (PyErr_Occurred()) {
errorAbort("Couldn't create instance of class " + className);
}
PyObject* result;
if (!(result = PyObject_CallMethod(instance, method.c_str(), NULL)))
errorAbort("Couldn't call method " + method);
std::string value = PyUnicode_AsUTF8(result);
cout << "Version: " << value << endl;
method = "fit";
if (!(result = PyObject_CallMethodObjArgs(instance, PyUnicode_FromString(method.c_str()), p, yp, NULL)))
errorAbort("Couldn't call method fit");
method = "score";
if (!(result = PyObject_CallMethodObjArgs(instance, PyUnicode_FromString(method.c_str()), p, yp, NULL)))
errorAbort("Couldn't call method score");
float score = PyFloat_AsDouble(result);
cout << "Score: " << score << endl;
Py_DECREF(result);
Py_DECREF(instance);
Py_DECREF(module);
Py_DECREF(p);
Py_DECREF(yp);
cout << "tercero" << endl;
return 0;
}

View File

@@ -51,7 +51,9 @@ int main(int argc, char* argv[])
cout << string(80, '-') << endl;
cout << "X: " << X.sizes() << endl;
cout << "y: " << y.sizes() << endl;
auto result = svc.fit(X, y, features, className, states).score(X, y);
cout << "SVC score " << result << endl;
auto result = stree.fit(X, y, features, className, states);
cout << "Now calling score" << endl;
auto result2 = stree.score(X, y);
cout << "SVC score " << result2 << endl;
return 0;
}