Completed predict
This commit is contained in:
@@ -3,7 +3,7 @@
|
||||
#include <iostream>
|
||||
|
||||
namespace pywrap {
|
||||
namespace p = boost::python;
|
||||
namespace bp = boost::python;
|
||||
namespace np = boost::python::numpy;
|
||||
PyClassifier::PyClassifier(const std::string& module, const std::string& className) : module(module), className(className)
|
||||
{
|
||||
@@ -20,14 +20,14 @@ namespace pywrap {
|
||||
{
|
||||
int m = X.size(0);
|
||||
int n = X.size(1);
|
||||
auto Xn = np::from_data(X.data_ptr(), np::dtype::get_builtin<float>(), p::make_tuple(m, n), p::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), p::object());
|
||||
auto Xn = np::from_data(X.data_ptr(), np::dtype::get_builtin<float>(), bp::make_tuple(m, n), bp::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), bp::object());
|
||||
Xn = Xn.transpose();
|
||||
return Xn;
|
||||
}
|
||||
std::pair<np::ndarray, np::ndarray> tensors2numpy(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
int n = X.size(1);
|
||||
auto yn = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), p::make_tuple(n), p::make_tuple(sizeof(y.dtype()) * 2), p::object());
|
||||
auto yn = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), bp::make_tuple(n), bp::make_tuple(sizeof(y.dtype()) * 2), bp::object());
|
||||
return { tensor2numpy(X), yn };
|
||||
}
|
||||
std::string PyClassifier::version()
|
||||
@@ -41,50 +41,36 @@ namespace pywrap {
|
||||
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
auto [Xn, yn] = tensors2numpy(X, y);
|
||||
CPyObject Xp = p::incref(p::object(Xn).ptr());
|
||||
CPyObject yp = p::incref(p::object(yn).ptr());
|
||||
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
|
||||
CPyObject yp = bp::incref(bp::object(yn).ptr());
|
||||
pyWrap->fit(module, this->className, Xp, yp);
|
||||
return *this;
|
||||
}
|
||||
void print_array(np::ndarray& array)
|
||||
{
|
||||
std::cout << "Array: " << std::endl;
|
||||
std::cout << p::extract<char const*>(p::str(array)) << std::endl;
|
||||
}
|
||||
torch::Tensor PyClassifier::predict(torch::Tensor& X)
|
||||
{
|
||||
int dimension = X.size(1);
|
||||
auto Xn = tensor2numpy(X);
|
||||
CPyObject Xp = p::incref(p::object(Xn).ptr());
|
||||
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
|
||||
PyObject* incoming = pyWrap->predict(module, className, Xp);
|
||||
std::cout << "Return from predict" << std::endl;
|
||||
p::handle<> handle(incoming);
|
||||
p::object object(handle);
|
||||
bp::handle<> handle(incoming);
|
||||
bp::object object(handle);
|
||||
np::ndarray prediction = np::from_object(object);
|
||||
print_array(prediction);
|
||||
// import_array();
|
||||
// if (!PyArray_Check(incoming)) {
|
||||
// throw std::logic_error("Returned value is not array");
|
||||
// }
|
||||
// std::cout << "Returned value is array" << std::endl;
|
||||
// PyArrayObject* np_ret = (PyArrayObject*)incoming;
|
||||
// if (PyArray_NDIM(np_ret) != dimension - 1) {
|
||||
// throw std::logic_error("Returned array has wrong dimension" + std::to_string(PyArray_NDIM(np_ret)) + "!=" + std::to_string(dimension - 1));
|
||||
// }
|
||||
// std::cout << "Returned array has correct dimension" << PyArray_NDIM(np_ret) << std::endl;
|
||||
// int len{ PyArray_SHAPE(np_ret)[0] };
|
||||
// int* data = reinterpret_cast<int*>(PyArray_DATA(np_ret));
|
||||
|
||||
// int* data = reinterpret_cast<int*>(prediction.get_data());
|
||||
// auto resultTensor = torch::tensor({ data }, torch::kInt32);
|
||||
auto resultTensor = torch::zeros({ prediction.shape(0) }, torch::kInt32);
|
||||
if (PyErr_Occurred()) {
|
||||
PyErr_Print();
|
||||
throw std::runtime_error("Error cleaning module " + module + " and class " + className);
|
||||
}
|
||||
int* data = reinterpret_cast<int*>(prediction.get_data());
|
||||
std::vector<int> v1(data, data + prediction.shape(0));
|
||||
auto resultTensor = torch::tensor(v1, torch::kInt32);
|
||||
Py_XDECREF(incoming);
|
||||
return resultTensor;
|
||||
}
|
||||
double PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
auto [Xn, yn] = tensors2numpy(X, y);
|
||||
CPyObject Xp = p::incref(p::object(Xn).ptr());
|
||||
CPyObject yp = p::incref(p::object(yn).ptr());
|
||||
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
|
||||
CPyObject yp = bp::incref(bp::object(yn).ptr());
|
||||
auto result = pyWrap->score(module, className, Xp, yp);
|
||||
return result;
|
||||
}
|
||||
|
@@ -58,7 +58,11 @@ int main(int argc, char* argv[])
|
||||
clf.fit(X, y, features, className, states);
|
||||
// cout << "STree Score: " << clf.score(X, y) << endl;
|
||||
auto prediction = clf.predict(X);
|
||||
cout << "Prediction: " << prediction << endl;
|
||||
cout << "Prediction: " << endl << "{";
|
||||
for (int i = 0; i < prediction.size(0); ++i) {
|
||||
cout << prediction[i].item<int>() << ", ";
|
||||
}
|
||||
cout << "}" << endl;
|
||||
}
|
||||
cout << "* End." << endl;
|
||||
}
|
Reference in New Issue
Block a user