Files
Platform/src/experimental_clfs/AdaBoost.h

81 lines
3.2 KiB
C++

// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef ADABOOST_H
#define ADABOOST_H
#include <vector>
#include <memory>
#include "bayesnet/ensembles/Ensemble.h"
namespace bayesnet {
class AdaBoost : public Ensemble {
public:
explicit AdaBoost(int n_estimators = 50, int max_depth = 1);
virtual ~AdaBoost() = default;
// Override base class methods
std::vector<std::string> graph(const std::string& title = "") const override;
// AdaBoost specific methods
void setNEstimators(int n_estimators) { this->n_estimators = n_estimators; checkValues(); }
int getNEstimators() const { return n_estimators; }
void setBaseMaxDepth(int depth) { this->base_max_depth = depth; checkValues(); }
int getBaseMaxDepth() const { return base_max_depth; }
// Get the weight of each base estimator
std::vector<double> getEstimatorWeights() const { return alphas; }
// Get training errors for each iteration
std::vector<double> getTrainingErrors() const { return training_errors; }
// Override setHyperparameters from BaseClassifier
void setHyperparameters(const nlohmann::json& hyperparameters) override;
torch::Tensor predict(torch::Tensor& X) override;
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override;
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X);
void setDebug(bool debug) { this->debug = debug; }
protected:
void buildModel(const torch::Tensor& weights) override;
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
private:
int n_estimators;
int base_max_depth; // Max depth for base decision trees
std::vector<double> alphas; // Weight of each base estimator
std::vector<double> training_errors; // Training error at each iteration
torch::Tensor sample_weights; // Current sample weights
int n_classes; // Number of classes in the target variable
int n; // Number of features
// Train a single base estimator
std::unique_ptr<Classifier> trainBaseEstimator(const torch::Tensor& weights);
// Calculate weighted error
double calculateWeightedError(Classifier* estimator, const torch::Tensor& weights);
// Update sample weights based on predictions
void updateSampleWeights(Classifier* estimator, double alpha);
// Normalize weights to sum to 1
void normalizeWeights();
// Check if hyperparameters values are valid
void checkValues() const;
// Make predictions for a single sample
int predictSample(const torch::Tensor& x) const;
// Make probabilistic predictions for a single sample
torch::Tensor predictProbaSample(const torch::Tensor& x) const;
bool debug = false; // Enable debug mode for debug output
};
}
#endif // ADABOOST_H