Experiment working with smoothing and disc-algo
This commit is contained in:
@@ -142,6 +142,7 @@ namespace platform {
|
|||||||
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
|
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
|
||||||
double best_fold_score = 0.0;
|
double best_fold_score = 0.0;
|
||||||
int best_idx_combination = -1;
|
int best_idx_combination = -1;
|
||||||
|
bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE;
|
||||||
json best_fold_hyper;
|
json best_fold_hyper;
|
||||||
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
||||||
auto hyperparam_line = combinations[idx_combination];
|
auto hyperparam_line = combinations[idx_combination];
|
||||||
@@ -167,7 +168,7 @@ namespace platform {
|
|||||||
hyperparameters.check(valid, dataset_name);
|
hyperparameters.check(valid, dataset_name);
|
||||||
clf->setHyperparameters(hyperparameters.get(dataset_name));
|
clf->setHyperparameters(hyperparameters.get(dataset_name));
|
||||||
// Train model
|
// Train model
|
||||||
clf->fit(X_nested_train, y_nested_train, features, className, states);
|
clf->fit(X_nested_train, y_nested_train, features, className, states, smoothing);
|
||||||
// Test model
|
// Test model
|
||||||
score += clf->score(X_nested_test, y_nested_test);
|
score += clf->score(X_nested_test, y_nested_test);
|
||||||
}
|
}
|
||||||
@@ -186,7 +187,7 @@ namespace platform {
|
|||||||
auto valid = clf->getValidHyperparameters();
|
auto valid = clf->getValidHyperparameters();
|
||||||
hyperparameters.check(valid, dataset_name);
|
hyperparameters.check(valid, dataset_name);
|
||||||
clf->setHyperparameters(best_fold_hyper);
|
clf->setHyperparameters(best_fold_hyper);
|
||||||
clf->fit(X_train, y_train, features, className, states);
|
clf->fit(X_train, y_train, features, className, states, smoothing);
|
||||||
best_fold_score = clf->score(X_test, y_test);
|
best_fold_score = clf->score(X_test, y_test);
|
||||||
// Return the result
|
// Return the result
|
||||||
result->idx_dataset = task["idx_dataset"].get<int>();
|
result->idx_dataset = task["idx_dataset"].get<int>();
|
||||||
|
@@ -194,8 +194,7 @@ namespace platform {
|
|||||||
//
|
//
|
||||||
// Train model
|
// Train model
|
||||||
//
|
//
|
||||||
clf->setSmoothing(smooth_type);
|
clf->fit(X_train, y_train, features, className, states, smooth_type);
|
||||||
clf->fit(X_train, y_train, features, className, states);
|
|
||||||
if (!quiet)
|
if (!quiet)
|
||||||
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
|
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
|
||||||
auto clf_notes = clf->getNotes();
|
auto clf_notes = clf->getNotes();
|
||||||
|
Reference in New Issue
Block a user