Remove old Files library

This commit is contained in:
2024-05-26 17:25:36 +02:00
parent df82f82e88
commit e3a06264a9
8 changed files with 129 additions and 341 deletions

View File

@@ -88,7 +88,6 @@ message(STATUS "Bayesnet_INCLUDE_DIRS=${Bayesnet_INCLUDE_DIRS}")
## Configure test data path ## Configure test data path
cmake_path(SET TEST_DATA_PATH "${CMAKE_CURRENT_SOURCE_DIR}/tests/data") cmake_path(SET TEST_DATA_PATH "${CMAKE_CURRENT_SOURCE_DIR}/tests/data")
configure_file(src/common/SourceData.h.in "${CMAKE_BINARY_DIR}/configured_files/include/SourceData.h") configure_file(src/common/SourceData.h.in "${CMAKE_BINARY_DIR}/configured_files/include/SourceData.h")
add_subdirectory(lib/Files)
add_subdirectory(config) add_subdirectory(config)
add_subdirectory(src) add_subdirectory(src)
add_subdirectory(sample) add_subdirectory(sample)

View File

@@ -1,176 +0,0 @@
#include "ArffFiles.h"
#include <fstream>
#include <sstream>
#include <map>
#include <cctype> // std::isdigit
#include <algorithm> // std::all_of
#include <iostream>
ArffFiles::ArffFiles() = default;
std::vector<std::string> ArffFiles::getLines() const
{
return lines;
}
unsigned long int ArffFiles::getSize() const
{
return lines.size();
}
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
{
return attributes;
}
std::string ArffFiles::getClassName() const
{
return className;
}
std::string ArffFiles::getClassType() const
{
return classType;
}
std::vector<std::vector<float>>& ArffFiles::getX()
{
return X;
}
std::vector<int>& ArffFiles::getY()
{
return y;
}
void ArffFiles::loadCommon(std::string fileName)
{
std::ifstream file(fileName);
if (!file.is_open()) {
throw std::invalid_argument("Unable to open file");
}
std::string line;
std::string keyword;
std::string attribute;
std::string type;
std::string type_w;
while (getline(file, line)) {
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
continue;
}
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
std::stringstream ss(line);
ss >> keyword >> attribute;
type = "";
while (ss >> type_w)
type += type_w + " ";
attributes.emplace_back(trim(attribute), trim(type));
continue;
}
if (line[0] == '@') {
continue;
}
lines.push_back(line);
}
file.close();
if (attributes.empty())
throw std::invalid_argument("No attributes found");
}
void ArffFiles::load(const std::string& fileName, bool classLast)
{
int labelIndex;
loadCommon(fileName);
if (classLast) {
className = std::get<0>(attributes.back());
classType = std::get<1>(attributes.back());
attributes.pop_back();
labelIndex = static_cast<int>(attributes.size());
} else {
className = std::get<0>(attributes.front());
classType = std::get<1>(attributes.front());
attributes.erase(attributes.begin());
labelIndex = 0;
}
generateDataset(labelIndex);
}
void ArffFiles::load(const std::string& fileName, const std::string& name)
{
int labelIndex;
loadCommon(fileName);
bool found = false;
for (int i = 0; i < attributes.size(); ++i) {
if (attributes[i].first == name) {
className = std::get<0>(attributes[i]);
classType = std::get<1>(attributes[i]);
attributes.erase(attributes.begin() + i);
labelIndex = i;
found = true;
break;
}
}
if (!found) {
throw std::invalid_argument("Class name not found");
}
generateDataset(labelIndex);
}
void ArffFiles::generateDataset(int labelIndex)
{
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
auto yy = std::vector<std::string>(lines.size(), "");
auto removeLines = std::vector<int>(); // Lines with missing values
for (size_t i = 0; i < lines.size(); i++) {
std::stringstream ss(lines[i]);
std::string value;
int pos = 0;
int xIndex = 0;
while (getline(ss, value, ',')) {
if (pos++ == labelIndex) {
yy[i] = value;
} else {
if (value == "?") {
X[xIndex++][i] = -1;
removeLines.push_back(i);
} else
X[xIndex++][i] = stof(value);
}
}
}
for (auto i : removeLines) {
yy.erase(yy.begin() + i);
for (auto& x : X) {
x.erase(x.begin() + i);
}
}
y = factorize(yy);
}
std::string ArffFiles::trim(const std::string& source)
{
std::string s(source);
s.erase(0, s.find_first_not_of(" '\n\r\t"));
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
return s;
}
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
{
std::vector<int> yy;
labels.clear();
yy.reserve(labels_t.size());
std::map<std::string, int> labelMap;
int i = 0;
for (const std::string& label : labels_t) {
if (labelMap.find(label) == labelMap.end()) {
labelMap[label] = i++;
bool allDigits = std::all_of(label.begin(), label.end(), isdigit);
if (allDigits)
labels.push_back("Class " + label);
else
labels.push_back(label);
}
yy.push_back(labelMap[label]);
}
return yy;
}

View File

@@ -1,34 +0,0 @@
#ifndef ARFFFILES_H
#define ARFFFILES_H
#include <string>
#include <vector>
class ArffFiles {
public:
ArffFiles();
void load(const std::string&, bool = true);
void load(const std::string&, const std::string&);
std::vector<std::string> getLines() const;
unsigned long int getSize() const;
std::string getClassName() const;
std::string getClassType() const;
std::vector<std::string> getLabels() const { return labels; }
static std::string trim(const std::string&);
std::vector<std::vector<float>>& getX();
std::vector<int>& getY();
std::vector<std::pair<std::string, std::string>> getAttributes() const;
std::vector<int> factorize(const std::vector<std::string>& labels_t);
private:
std::vector<std::string> lines;
std::vector<std::pair<std::string, std::string>> attributes;
std::string className;
std::string classType;
std::vector<std::vector<float>> X;
std::vector<int> y;
std::vector<std::string> labels;
void generateDataset(int);
void loadCommon(std::string);
};
#endif

View File

@@ -1 +0,0 @@
add_library(ArffFiles ArffFiles.cc)

View File

@@ -12,4 +12,4 @@ include_directories(
${Bayesnet_INCLUDE_DIRS} ${Bayesnet_INCLUDE_DIRS}
) )
add_executable(PlatformSample sample.cpp ${Platform_SOURCE_DIR}/src/main/Models.cpp) add_executable(PlatformSample sample.cpp ${Platform_SOURCE_DIR}/src/main/Models.cpp)
target_link_libraries(PlatformSample "${PyClassifiers}" "${BayesNet}" ArffFiles mdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy) target_link_libraries(PlatformSample "${PyClassifiers}" "${BayesNet}" mdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy)

View File

@@ -5,7 +5,7 @@
#include <torch/torch.h> #include <torch/torch.h>
#include <argparse/argparse.hpp> #include <argparse/argparse.hpp>
#include <nlohmann/json.hpp> #include <nlohmann/json.hpp>
#include <ArffFiles.h> #include <ArffFiles.hpp>
#include <CPPFImdlp.h> #include <CPPFImdlp.h>
#include <folding.hpp> #include <folding.hpp>
#include <bayesnet/utils/BayesMetrics.h> #include <bayesnet/utils/BayesMetrics.h>
@@ -79,11 +79,11 @@ int main(int argc, char** argv)
} }
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}"); throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
} }
); );
program.add_argument("-p", "--path") program.add_argument("-p", "--path")
.help(" folder where the data files are located, default") .help(" folder where the data files are located, default")
.default_value(std::string{ PATH } .default_value(std::string{ PATH }
); );
program.add_argument("-m", "--model") program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->toString()) .help("Model to use " + platform::Models::instance()->toString())
.action([](const std::string& value) { .action([](const std::string& value) {
@@ -93,7 +93,7 @@ int main(int argc, char** argv)
} }
throw runtime_error("Model must be one of " + platform::Models::instance()->toString()); throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
} }
); );
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true); program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true); program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true); program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
@@ -112,129 +112,129 @@ int main(int argc, char** argv)
catch (...) { catch (...) {
throw runtime_error("Number of folds must be an integer"); throw runtime_error("Number of folds must be an integer");
}}); }});
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>(); program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
bool class_last, stratified, tensors, dump_cpt; bool class_last, stratified, tensors, dump_cpt;
std::string model_name, file_name, path, complete_file_name; std::string model_name, file_name, path, complete_file_name;
int nFolds, seed; int nFolds, seed;
try { try {
program.parse_args(argc, argv); program.parse_args(argc, argv);
file_name = program.get<std::string>("dataset"); file_name = program.get<std::string>("dataset");
path = program.get<std::string>("path"); path = program.get<std::string>("path");
model_name = program.get<std::string>("model"); model_name = program.get<std::string>("model");
complete_file_name = path + file_name + ".arff"; complete_file_name = path + file_name + ".arff";
stratified = program.get<bool>("stratified"); stratified = program.get<bool>("stratified");
tensors = program.get<bool>("tensors"); tensors = program.get<bool>("tensors");
nFolds = program.get<int>("folds"); nFolds = program.get<int>("folds");
seed = program.get<int>("seed"); seed = program.get<int>("seed");
dump_cpt = program.get<bool>("dumpcpt"); dump_cpt = program.get<bool>("dumpcpt");
class_last = datasets[file_name]; class_last = datasets[file_name];
if (!file_exists(complete_file_name)) { if (!file_exists(complete_file_name)) {
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist"); throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
}
}
catch (const exception& err) {
cerr << err.what() << std::endl;
cerr << program;
exit(1);
} }
}
catch (const exception& err) {
cerr << err.what() << std::endl;
cerr << program;
exit(1);
}
/* /*
* Begin Processing * Begin Processing
*/ */
auto handler = ArffFiles(); auto handler = ArffFiles();
handler.load(complete_file_name, class_last); handler.load(complete_file_name, class_last);
// Get Dataset X, y // Get Dataset X, y
std::vector<mdlp::samples_t>& X = handler.getX(); std::vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY(); mdlp::labels_t& y = handler.getY();
// Get className & Features // Get className & Features
auto className = handler.getClassName(); auto className = handler.getClassName();
std::vector<std::string> features; std::vector<std::string> features;
auto attributes = handler.getAttributes(); auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), transform(attributes.begin(), attributes.end(), back_inserter(features),
[](const pair<std::string, std::string>& item) { return item.first; }); [](const pair<std::string, std::string>& item) { return item.first; });
// Discretize Dataset // Discretize Dataset
auto [Xd, maxes] = discretize(X, y, features); auto [Xd, maxes] = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1; maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<std::string, std::vector<int>> states; map<std::string, std::vector<int>> states;
for (auto feature : features) { for (auto feature : features) {
states[feature] = std::vector<int>(maxes[feature]); states[feature] = std::vector<int>(maxes[feature]);
}
states[className] = std::vector<int>(maxes[className]);
auto clf = platform::Models::instance()->create(model_name);
clf->fit(Xd, y, features, className, states);
if (dump_cpt) {
std::cout << "--- CPT Tables ---" << std::endl;
clf->dump_cpt();
}
auto lines = clf->show();
for (auto line : lines) {
std::cout << line << std::endl;
}
std::cout << "--- Topological Order ---" << std::endl;
auto order = clf->topological_order();
for (auto name : order) {
std::cout << name << ", ";
}
std::cout << "end." << std::endl;
auto score = clf->score(Xd, y);
std::cout << "Score: " << score << std::endl;
auto graph = clf->graph();
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
file.close();
std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
std::string stratified_string = stratified ? " Stratified" : "";
std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
std::cout << "==========================================" << std::endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
torch::Tensor yt = torch::tensor(y, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
}
float total_score = 0, total_score_train = 0, score_train, score_test;
folding::Fold* fold;
double nodes = 0.0;
if (stratified)
fold = new folding::StratifiedKFold(nFolds, y, seed);
else
fold = new folding::KFold(nFolds, y.size(), seed);
for (auto i = 0; i < nFolds; ++i) {
auto [train, test] = fold->getFold(i);
std::cout << "Fold: " << i + 1 << std::endl;
if (tensors) {
auto ttrain = torch::tensor(train, torch::kInt64);
auto ttest = torch::tensor(test, torch::kInt64);
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
torch::Tensor ytraint = yt.index({ ttrain });
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
torch::Tensor ytestt = yt.index({ ttest });
clf->fit(Xtraint, ytraint, features, className, states);
auto temp = clf->predict(Xtraint);
score_train = clf->score(Xtraint, ytraint);
score_test = clf->score(Xtestt, ytestt);
} else {
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
auto [Xtest, ytest] = extract_indices(test, Xd, y);
clf->fit(Xtrain, ytrain, features, className, states);
std::cout << "Nodes: " << clf->getNumberOfNodes() << std::endl;
nodes += clf->getNumberOfNodes();
score_train = clf->score(Xtrain, ytrain);
score_test = clf->score(Xtest, ytest);
} }
states[className] = std::vector<int>(maxes[className]);
auto clf = platform::Models::instance()->create(model_name);
clf->fit(Xd, y, features, className, states);
if (dump_cpt) { if (dump_cpt) {
std::cout << "--- CPT Tables ---" << std::endl; std::cout << "--- CPT Tables ---" << std::endl;
clf->dump_cpt(); clf->dump_cpt();
} }
total_score_train += score_train; auto lines = clf->show();
total_score += score_test; for (auto line : lines) {
std::cout << "Score Train: " << score_train << std::endl; std::cout << line << std::endl;
std::cout << "Score Test : " << score_test << std::endl; }
std::cout << "-------------------------------------------------------------------------------" << std::endl; std::cout << "--- Topological Order ---" << std::endl;
} auto order = clf->topological_order();
std::cout << "Nodes: " << nodes / nFolds << std::endl; for (auto name : order) {
std::cout << "**********************************************************************************" << std::endl; std::cout << name << ", ";
std::cout << "Average Score Train: " << total_score_train / nFolds << std::endl; }
std::cout << "Average Score Test : " << total_score / nFolds << std::endl;return 0; std::cout << "end." << std::endl;
auto score = clf->score(Xd, y);
std::cout << "Score: " << score << std::endl;
auto graph = clf->graph();
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
file.close();
std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
std::string stratified_string = stratified ? " Stratified" : "";
std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
std::cout << "==========================================" << std::endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
torch::Tensor yt = torch::tensor(y, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
}
float total_score = 0, total_score_train = 0, score_train, score_test;
folding::Fold* fold;
double nodes = 0.0;
if (stratified)
fold = new folding::StratifiedKFold(nFolds, y, seed);
else
fold = new folding::KFold(nFolds, y.size(), seed);
for (auto i = 0; i < nFolds; ++i) {
auto [train, test] = fold->getFold(i);
std::cout << "Fold: " << i + 1 << std::endl;
if (tensors) {
auto ttrain = torch::tensor(train, torch::kInt64);
auto ttest = torch::tensor(test, torch::kInt64);
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
torch::Tensor ytraint = yt.index({ ttrain });
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
torch::Tensor ytestt = yt.index({ ttest });
clf->fit(Xtraint, ytraint, features, className, states);
auto temp = clf->predict(Xtraint);
score_train = clf->score(Xtraint, ytraint);
score_test = clf->score(Xtestt, ytestt);
} else {
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
auto [Xtest, ytest] = extract_indices(test, Xd, y);
clf->fit(Xtrain, ytrain, features, className, states);
std::cout << "Nodes: " << clf->getNumberOfNodes() << std::endl;
nodes += clf->getNumberOfNodes();
score_train = clf->score(Xtrain, ytrain);
score_test = clf->score(Xtest, ytest);
}
if (dump_cpt) {
std::cout << "--- CPT Tables ---" << std::endl;
clf->dump_cpt();
}
total_score_train += score_train;
total_score += score_test;
std::cout << "Score Train: " << score_train << std::endl;
std::cout << "Score Test : " << score_test << std::endl;
std::cout << "-------------------------------------------------------------------------------" << std::endl;
}
std::cout << "Nodes: " << nodes / nFolds << std::endl;
std::cout << "**********************************************************************************" << std::endl;
std::cout << "Average Score Train: " << total_score_train / nFolds << std::endl;
std::cout << "Average Score Test : " << total_score / nFolds << std::endl;return 0;
} }

View File

@@ -26,7 +26,7 @@ add_executable(
reports/ReportExcel.cpp reports/ReportBase.cpp reports/ExcelFile.cpp reports/ReportExcel.cpp reports/ReportBase.cpp reports/ExcelFile.cpp
results/Result.cpp results/Result.cpp
) )
target_link_libraries(b_best Boost::boost "${PyClassifiers}" "${BayesNet}" ArffFiles mdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy "${XLSXWRITER_LIB}") target_link_libraries(b_best Boost::boost "${PyClassifiers}" "${BayesNet}" mdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy "${XLSXWRITER_LIB}")
# b_grid # b_grid
set(grid_sources GridSearch.cpp GridData.cpp) set(grid_sources GridSearch.cpp GridData.cpp)
@@ -35,7 +35,7 @@ add_executable(b_grid commands/b_grid.cpp ${grid_sources}
common/Datasets.cpp common/Dataset.cpp common/Datasets.cpp common/Dataset.cpp
main/HyperParameters.cpp main/Models.cpp main/HyperParameters.cpp main/Models.cpp
) )
target_link_libraries(b_grid ${MPI_CXX_LIBRARIES} "${PyClassifiers}" "${BayesNet}" ArffFiles mdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy) target_link_libraries(b_grid ${MPI_CXX_LIBRARIES} "${PyClassifiers}" "${BayesNet}" mdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy)
# b_list # b_list
add_executable(b_list commands/b_list.cpp add_executable(b_list commands/b_list.cpp
@@ -44,7 +44,7 @@ add_executable(b_list commands/b_list.cpp
reports/ReportExcel.cpp reports/ExcelFile.cpp reports/ReportBase.cpp reports/DatasetsExcel.cpp reports/DatasetsConsole.cpp reports/ReportsPaged.cpp reports/ReportExcel.cpp reports/ExcelFile.cpp reports/ReportBase.cpp reports/DatasetsExcel.cpp reports/DatasetsConsole.cpp reports/ReportsPaged.cpp
results/Result.cpp results/ResultsDatasetExcel.cpp results/ResultsDataset.cpp results/ResultsDatasetConsole.cpp results/Result.cpp results/ResultsDatasetExcel.cpp results/ResultsDataset.cpp results/ResultsDatasetConsole.cpp
) )
target_link_libraries(b_list "${PyClassifiers}" "${BayesNet}" ArffFiles mdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy "${XLSXWRITER_LIB}") target_link_libraries(b_list "${PyClassifiers}" "${BayesNet}" mdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy "${XLSXWRITER_LIB}")
# b_main # b_main
set(main_sources Experiment.cpp Models.cpp HyperParameters.cpp Scores.cpp) set(main_sources Experiment.cpp Models.cpp HyperParameters.cpp Scores.cpp)
@@ -54,7 +54,7 @@ add_executable(b_main commands/b_main.cpp ${main_sources}
reports/ReportConsole.cpp reports/ReportBase.cpp reports/ReportConsole.cpp reports/ReportBase.cpp
results/Result.cpp results/Result.cpp
) )
target_link_libraries(b_main "${PyClassifiers}" "${BayesNet}" ArffFiles mdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy) target_link_libraries(b_main "${PyClassifiers}" "${BayesNet}" mdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy)
# b_manage # b_manage
set(manage_sources ManageScreen.cpp CommandParser.cpp ResultsManager.cpp) set(manage_sources ManageScreen.cpp CommandParser.cpp ResultsManager.cpp)
@@ -66,4 +66,4 @@ add_executable(
results/Result.cpp results/ResultsDataset.cpp results/ResultsDatasetConsole.cpp results/Result.cpp results/ResultsDataset.cpp results/ResultsDatasetConsole.cpp
main/Scores.cpp main/Scores.cpp
) )
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp "${BayesNet}") target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" mdlp "${BayesNet}")

View File

@@ -1,4 +1,4 @@
#include <ArffFiles.h> #include <ArffFiles.hpp>
#include <fstream> #include <fstream>
#include "Dataset.h" #include "Dataset.h"
namespace platform { namespace platform {