Add json constructor to Scores

This commit is contained in:
2024-05-10 11:35:07 +02:00
parent 009ed037b8
commit dd94fd51f7
4 changed files with 75 additions and 4 deletions

1
.vscode/launch.json vendored
View File

@@ -110,6 +110,7 @@
"request": "launch",
"program": "${workspaceFolder}/build_debug/tests/unit_tests_platform",
"args": [
"[Scores]",
// "-c=\"Metrics Test\"",
// "-s",
],

View File

@@ -4,19 +4,57 @@ namespace platform {
Scores::Scores(torch::Tensor& y_test, torch::Tensor& y_pred, int num_classes, std::vector<std::string> labels) : num_classes(num_classes), labels(labels)
{
if (labels.size() == 0) {
for (int i = 0; i < num_classes; i++) {
this->labels.push_back("Class " + std::to_string(i));
}
init_default_labels();
}
total = y_test.size(0);
accuracy_value = (y_pred == y_test).sum().item<float>() / total;
confusion_matrix = torch::zeros({ num_classes, num_classes }, torch::kInt32);
init_confusion_matrix();
for (int i = 0; i < total; i++) {
int actual = y_test[i].item<int>();
int predicted = y_pred[i].item<int>();
confusion_matrix[actual][predicted] += 1;
}
}
void Scores::init_confusion_matrix()
{
confusion_matrix = torch::zeros({ num_classes, num_classes }, torch::kInt32);
}
void Scores::init_default_labels()
{
for (int i = 0; i < num_classes; i++) {
labels.push_back("Class " + std::to_string(i));
}
}
Scores::Scores(json& confusion_matrix_)
{
json values;
total = 0;
num_classes = confusion_matrix_.size();
init_confusion_matrix();
init_default_labels();
int i = 0;
for (const auto& item : confusion_matrix_) {
if (item.is_array()) {
values = item;
} else {
auto it = item.begin();
values = it.value();
labels.push_back(it.key());
}
for (int j = 0; j < num_classes; ++j) {
int value_int = values[j].get<int>();
confusion_matrix[i][j] = value_int;
total += value_int;
}
std::cout << std::endl;
i++;
}
// Compute accuracy with the confusion matrix
for (int i = 0; i < num_classes; i++) {
accuracy_value += confusion_matrix[i][i].item<int>();
}
accuracy_value /= total;
}
float Scores::accuracy()
{
return accuracy_value;

View File

@@ -9,6 +9,7 @@ namespace platform {
class Scores {
public:
Scores(torch::Tensor& y_test, torch::Tensor& y_pred, int num_classes, std::vector<std::string> labels = {});
explicit Scores(json& confusion_matrix_);
float accuracy();
float f1_score(int num_class);
float f1_weighted();
@@ -20,6 +21,8 @@ namespace platform {
json get_confusion_matrix_json(bool labels_as_keys = false);
private:
std::string classification_report_line(std::string label, float precision, float recall, float f1_score, int support);
void init_confusion_matrix();
void init_default_labels();
int num_classes;
float accuracy_value;
int total;

View File

@@ -148,3 +148,32 @@ weighted avg 0.8250000 0.6000000 0.6400000 10
)";
REQUIRE(scores.classification_report() == expected);
}
TEST_CASE("JSON constructor", "[Scores]")
{
std::vector<int> y_test = { 0, 2, 2, 2, 2, 0, 1, 2, 0, 2 };
std::vector<int> y_pred = { 0, 1, 2, 2, 1, 1, 1, 0, 0, 2 };
auto y_test_tensor = torch::tensor(y_test, torch::kInt32);
auto y_pred_tensor = torch::tensor(y_pred, torch::kInt32);
std::vector<std::string> labels = { "Aeroplane", "Boat", "Car" };
platform::Scores scores(y_test_tensor, y_pred_tensor, 3, labels);
auto res_json_int = scores.get_confusion_matrix_json();
platform::Scores scores2(res_json_int);
REQUIRE(scores.accuracy() == scores2.accuracy());
for (int i = 0; i < 2; ++i) {
REQUIRE(scores.f1_score(i) == scores2.f1_score(i));
REQUIRE(scores.precision(i) == scores2.precision(i));
REQUIRE(scores.recall(i) == scores2.recall(i));
}
REQUIRE(scores.f1_weighted() == scores2.f1_weighted());
REQUIRE(scores.f1_macro() == scores2.f1_macro());
auto res_json_key = scores.get_confusion_matrix_json(true);
platform::Scores scores3(res_json_key);
REQUIRE(scores.accuracy() == scores3.accuracy());
for (int i = 0; i < 2; ++i) {
REQUIRE(scores.f1_score(i) == scores3.f1_score(i));
REQUIRE(scores.precision(i) == scores3.precision(i));
REQUIRE(scores.recall(i) == scores3.recall(i));
}
REQUIRE(scores.f1_weighted() == scores3.f1_weighted());
REQUIRE(scores.f1_macro() == scores3.f1_macro());
}