Update models and remove normalize weights in XA1DE
This commit is contained in:
@@ -14,7 +14,7 @@ namespace platform {
|
|||||||
auto y = TensorUtils::to_vector<int>(dataset.index({ -1, "..." }));
|
auto y = TensorUtils::to_vector<int>(dataset.index({ -1, "..." }));
|
||||||
int num_instances = X[0].size();
|
int num_instances = X[0].size();
|
||||||
weights_ = torch::full({ num_instances }, 1.0);
|
weights_ = torch::full({ num_instances }, 1.0);
|
||||||
normalize_weights(num_instances);
|
//normalize_weights(num_instances);
|
||||||
aode_.fit(X, y, features, className, states, weights_, true, smoothing);
|
aode_.fit(X, y, features, className, states, weights_, true, smoothing);
|
||||||
}
|
}
|
||||||
}
|
}
|
@@ -6,13 +6,14 @@
|
|||||||
#include <bayesnet/ensembles/A2DE.h>
|
#include <bayesnet/ensembles/A2DE.h>
|
||||||
#include <bayesnet/ensembles/AODELd.h>
|
#include <bayesnet/ensembles/AODELd.h>
|
||||||
#include <bayesnet/ensembles/XBAODE.h>
|
#include <bayesnet/ensembles/XBAODE.h>
|
||||||
|
#include <bayesnet/ensembles/XBA2DE.h>
|
||||||
#include <bayesnet/ensembles/BoostAODE.h>
|
#include <bayesnet/ensembles/BoostAODE.h>
|
||||||
#include <bayesnet/ensembles/BoostA2DE.h>
|
#include <bayesnet/ensembles/BoostA2DE.h>
|
||||||
#include <bayesnet/classifiers/TAN.h>
|
#include <bayesnet/classifiers/TAN.h>
|
||||||
#include <bayesnet/classifiers/KDB.h>
|
#include <bayesnet/classifiers/KDB.h>
|
||||||
#include <bayesnet/classifiers/SPODE.h>
|
#include <bayesnet/classifiers/SPODE.h>
|
||||||
#include <bayesnet/classifiers/XSPODE.h>
|
#include <bayesnet/classifiers/XSPODE.h>
|
||||||
#include <bayesnet/classifiers/XSPnDE.h>
|
#include <bayesnet/classifiers/XSP2DE.h>
|
||||||
#include <bayesnet/classifiers/SPnDE.h>
|
#include <bayesnet/classifiers/SPnDE.h>
|
||||||
#include <bayesnet/classifiers/TANLd.h>
|
#include <bayesnet/classifiers/TANLd.h>
|
||||||
#include <bayesnet/classifiers/KDBLd.h>
|
#include <bayesnet/classifiers/KDBLd.h>
|
||||||
|
@@ -37,10 +37,12 @@ namespace platform {
|
|||||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::XGBoost();});
|
[](void) -> bayesnet::BaseClassifier* { return new pywrap::XGBoost();});
|
||||||
static Registrar registrarXSPODE("XSPODE",
|
static Registrar registrarXSPODE("XSPODE",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::XSpode(0);});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::XSpode(0);});
|
||||||
static Registrar registrarXSPnDE("XSPnDE",
|
static Registrar registrarXSP2DE("XSP2DE",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::XSpnde(0, 1);});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::XSp2de(0, 1);});
|
||||||
static Registrar registrarXBAODE("XBAODE",
|
static Registrar registrarXBAODE("XBAODE",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::XBAODE();});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::XBAODE();});
|
||||||
|
static Registrar registrarXBA2DE("XBA2DE",
|
||||||
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::XBA2DE();});
|
||||||
static Registrar registrarXA1DE("XA1DE",
|
static Registrar registrarXA1DE("XA1DE",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new XA1DE();});
|
[](void) -> bayesnet::BaseClassifier* { return new XA1DE();});
|
||||||
}
|
}
|
||||||
|
Reference in New Issue
Block a user