Begin b_list excel
This commit is contained in:
355
src/best/BestResults.cc
Normal file
355
src/best/BestResults.cc
Normal file
@@ -0,0 +1,355 @@
|
||||
#include <filesystem>
|
||||
#include <set>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <algorithm>
|
||||
#include "BestResults.h"
|
||||
#include "Result.h"
|
||||
#include "Colors.h"
|
||||
#include "Statistics.h"
|
||||
#include "BestResultsExcel.h"
|
||||
#include "CLocale.h"
|
||||
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
// function ftime_to_std::string, Code taken from
|
||||
// https://stackoverflow.com/a/58237530/1389271
|
||||
template <typename TP>
|
||||
std::string ftime_to_string(TP tp)
|
||||
{
|
||||
auto sctp = std::chrono::time_point_cast<std::chrono::system_clock::duration>(tp - TP::clock::now()
|
||||
+ std::chrono::system_clock::now());
|
||||
auto tt = std::chrono::system_clock::to_time_t(sctp);
|
||||
std::tm* gmt = std::gmtime(&tt);
|
||||
std::stringstream buffer;
|
||||
buffer << std::put_time(gmt, "%Y-%m-%d %H:%M");
|
||||
return buffer.str();
|
||||
}
|
||||
namespace platform {
|
||||
std::string BestResults::build()
|
||||
{
|
||||
auto files = loadResultFiles();
|
||||
if (files.size() == 0) {
|
||||
std::cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
json bests;
|
||||
for (const auto& file : files) {
|
||||
auto result = Result();
|
||||
result.load(path, file);
|
||||
auto data = result.getJson();
|
||||
for (auto const& item : data.at("results")) {
|
||||
bool update = true;
|
||||
auto datasetName = item.at("dataset").get<std::string>();
|
||||
if (bests.contains(datasetName)) {
|
||||
if (item.at("score").get<double>() < bests[datasetName].at(0).get<double>()) {
|
||||
update = false;
|
||||
}
|
||||
}
|
||||
if (update) {
|
||||
bests[datasetName] = { item.at("score").get<double>(), item.at("hyperparameters"), file };
|
||||
}
|
||||
}
|
||||
}
|
||||
std::string bestFileName = path + bestResultFile();
|
||||
std::ofstream file(bestFileName);
|
||||
file << bests;
|
||||
file.close();
|
||||
return bestFileName;
|
||||
}
|
||||
std::string BestResults::bestResultFile()
|
||||
{
|
||||
return "best_results_" + score + "_" + model + ".json";
|
||||
}
|
||||
std::pair<std::string, std::string> getModelScore(std::string name)
|
||||
{
|
||||
// results_accuracy_BoostAODE_MacBookpro16_2023-09-06_12:27:00_1.json
|
||||
auto pos = name.find("_");
|
||||
auto pos2 = name.find("_", pos + 1);
|
||||
std::string score = name.substr(pos + 1, pos2 - pos - 1);
|
||||
pos = name.find("_", pos2 + 1);
|
||||
std::string model = name.substr(pos2 + 1, pos - pos2 - 1);
|
||||
return { model, score };
|
||||
}
|
||||
std::vector<std::string> BestResults::loadResultFiles()
|
||||
{
|
||||
std::vector<std::string> files;
|
||||
using std::filesystem::directory_iterator;
|
||||
std::string fileModel, fileScore;
|
||||
for (const auto& file : directory_iterator(path)) {
|
||||
auto fileName = file.path().filename().string();
|
||||
if (fileName.find(".json") != std::string::npos && fileName.find("results_") == 0) {
|
||||
tie(fileModel, fileScore) = getModelScore(fileName);
|
||||
if (score == fileScore && (model == fileModel || model == "any")) {
|
||||
files.push_back(fileName);
|
||||
}
|
||||
}
|
||||
}
|
||||
std::sort(files.begin(), files.end());
|
||||
return files;
|
||||
}
|
||||
json BestResults::loadFile(const std::string& fileName)
|
||||
{
|
||||
std::ifstream resultData(fileName);
|
||||
if (resultData.is_open()) {
|
||||
json data = json::parse(resultData);
|
||||
return data;
|
||||
}
|
||||
throw std::invalid_argument("Unable to open result file. [" + fileName + "]");
|
||||
}
|
||||
std::vector<std::string> BestResults::getModels()
|
||||
{
|
||||
std::set<std::string> models;
|
||||
std::vector<std::string> result;
|
||||
auto files = loadResultFiles();
|
||||
if (files.size() == 0) {
|
||||
std::cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
std::string fileModel, fileScore;
|
||||
for (const auto& file : files) {
|
||||
// extract the model from the file name
|
||||
tie(fileModel, fileScore) = getModelScore(file);
|
||||
// add the model to the std::vector of models
|
||||
models.insert(fileModel);
|
||||
}
|
||||
result = std::vector<std::string>(models.begin(), models.end());
|
||||
maxModelName = (*max_element(result.begin(), result.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
maxModelName = std::max(12, maxModelName);
|
||||
return result;
|
||||
}
|
||||
std::vector<std::string> BestResults::getDatasets(json table)
|
||||
{
|
||||
std::vector<std::string> datasets;
|
||||
for (const auto& dataset : table.items()) {
|
||||
datasets.push_back(dataset.key());
|
||||
}
|
||||
maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
maxDatasetName = std::max(7, maxDatasetName);
|
||||
return datasets;
|
||||
}
|
||||
void BestResults::buildAll()
|
||||
{
|
||||
auto models = getModels();
|
||||
std::cout << "Building best results for model: ";
|
||||
for (const auto& model : models) {
|
||||
this->model = model;
|
||||
std::cout << model << ", ";
|
||||
build();
|
||||
}
|
||||
std::cout << "end." << std::endl << std::endl;
|
||||
model = "any";
|
||||
}
|
||||
void BestResults::listFile()
|
||||
{
|
||||
std::string bestFileName = path + bestResultFile();
|
||||
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
|
||||
fclose(fileTest);
|
||||
} else {
|
||||
std::cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
auto temp = ConfigLocale();
|
||||
auto date = ftime_to_string(std::filesystem::last_write_time(bestFileName));
|
||||
auto data = loadFile(bestFileName);
|
||||
auto datasets = getDatasets(data);
|
||||
int maxFileName = 0;
|
||||
int maxHyper = 15;
|
||||
for (auto const& item : data.items()) {
|
||||
maxHyper = std::max(maxHyper, (int)item.value().at(1).dump().size());
|
||||
maxFileName = std::max(maxFileName, (int)item.value().at(2).get<std::string>().size());
|
||||
}
|
||||
std::stringstream oss;
|
||||
oss << Colors::GREEN() << "Best results for " << model << " as of " << date << std::endl;
|
||||
std::cout << oss.str();
|
||||
std::cout << std::string(oss.str().size() - 8, '-') << std::endl;
|
||||
std::cout << Colors::GREEN() << " # " << std::setw(maxDatasetName + 1) << std::left << "Dataset" << "Score " << std::setw(maxFileName) << "File" << " Hyperparameters" << std::endl;
|
||||
std::cout << "=== " << std::string(maxDatasetName, '=') << " =========== " << std::string(maxFileName, '=') << " " << std::string(maxHyper, '=') << std::endl;
|
||||
auto i = 0;
|
||||
bool odd = true;
|
||||
double total = 0;
|
||||
for (auto const& item : data.items()) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
double value = item.value().at(0).get<double>();
|
||||
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
|
||||
std::cout << std::setw(maxDatasetName) << std::left << item.key() << " ";
|
||||
std::cout << std::setw(11) << std::setprecision(9) << std::fixed << value << " ";
|
||||
std::cout << std::setw(maxFileName) << item.value().at(2).get<std::string>() << " ";
|
||||
std::cout << item.value().at(1) << " ";
|
||||
std::cout << std::endl;
|
||||
total += value;
|
||||
odd = !odd;
|
||||
}
|
||||
std::cout << Colors::GREEN() << "=== " << std::string(maxDatasetName, '=') << " ===========" << std::endl;
|
||||
std::cout << Colors::GREEN() << " Total" << std::string(maxDatasetName - 5, '.') << " " << std::setw(11) << std::setprecision(8) << std::fixed << total << std::endl;
|
||||
|
||||
}
|
||||
json BestResults::buildTableResults(std::vector<std::string> models)
|
||||
{
|
||||
json table;
|
||||
auto maxDate = std::filesystem::file_time_type::max();
|
||||
for (const auto& model : models) {
|
||||
this->model = model;
|
||||
std::string bestFileName = path + bestResultFile();
|
||||
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
|
||||
fclose(fileTest);
|
||||
} else {
|
||||
std::cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
auto dateWrite = std::filesystem::last_write_time(bestFileName);
|
||||
if (dateWrite < maxDate) {
|
||||
maxDate = dateWrite;
|
||||
}
|
||||
auto data = loadFile(bestFileName);
|
||||
table[model] = data;
|
||||
}
|
||||
table["dateTable"] = ftime_to_string(maxDate);
|
||||
return table;
|
||||
}
|
||||
void BestResults::printTableResults(std::vector<std::string> models, json table)
|
||||
{
|
||||
std::stringstream oss;
|
||||
oss << Colors::GREEN() << "Best results for " << score << " as of " << table.at("dateTable").get<std::string>() << std::endl;
|
||||
std::cout << oss.str();
|
||||
std::cout << std::string(oss.str().size() - 8, '-') << std::endl;
|
||||
std::cout << Colors::GREEN() << " # " << std::setw(maxDatasetName + 1) << std::left << std::string("Dataset");
|
||||
for (const auto& model : models) {
|
||||
std::cout << std::setw(maxModelName) << std::left << model << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << "=== " << std::string(maxDatasetName, '=') << " ";
|
||||
for (const auto& model : models) {
|
||||
std::cout << std::string(maxModelName, '=') << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
auto i = 0;
|
||||
bool odd = true;
|
||||
std::map<std::string, double> totals;
|
||||
int nDatasets = table.begin().value().size();
|
||||
for (const auto& model : models) {
|
||||
totals[model] = 0.0;
|
||||
}
|
||||
auto datasets = getDatasets(table.begin().value());
|
||||
for (auto const& dataset : datasets) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
|
||||
std::cout << std::setw(maxDatasetName) << std::left << dataset << " ";
|
||||
double maxValue = 0;
|
||||
// Find out the max value for this dataset
|
||||
for (const auto& model : models) {
|
||||
double value;
|
||||
try {
|
||||
value = table[model].at(dataset).at(0).get<double>();
|
||||
}
|
||||
catch (nlohmann::json_abi_v3_11_3::detail::out_of_range err) {
|
||||
value = -1.0;
|
||||
}
|
||||
if (value > maxValue) {
|
||||
maxValue = value;
|
||||
}
|
||||
}
|
||||
// Print the row with red colors on max values
|
||||
for (const auto& model : models) {
|
||||
std::string efectiveColor = color;
|
||||
double value;
|
||||
try {
|
||||
value = table[model].at(dataset).at(0).get<double>();
|
||||
}
|
||||
catch (nlohmann::json_abi_v3_11_3::detail::out_of_range err) {
|
||||
value = -1.0;
|
||||
}
|
||||
if (value == maxValue) {
|
||||
efectiveColor = Colors::RED();
|
||||
}
|
||||
if (value == -1) {
|
||||
std::cout << Colors::YELLOW() << std::setw(maxModelName) << std::right << "N/A" << " ";
|
||||
} else {
|
||||
totals[model] += value;
|
||||
std::cout << efectiveColor << std::setw(maxModelName) << std::setprecision(maxModelName - 2) << std::fixed << value << " ";
|
||||
}
|
||||
}
|
||||
std::cout << std::endl;
|
||||
odd = !odd;
|
||||
}
|
||||
std::cout << Colors::GREEN() << "=== " << std::string(maxDatasetName, '=') << " ";
|
||||
for (const auto& model : models) {
|
||||
std::cout << std::string(maxModelName, '=') << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << Colors::GREEN() << " Totals" << std::string(maxDatasetName - 6, '.') << " ";
|
||||
double max_value = 0.0;
|
||||
for (const auto& total : totals) {
|
||||
if (total.second > max_value) {
|
||||
max_value = total.second;
|
||||
}
|
||||
}
|
||||
for (const auto& model : models) {
|
||||
std::string efectiveColor = Colors::GREEN();
|
||||
if (totals[model] == max_value) {
|
||||
efectiveColor = Colors::RED();
|
||||
}
|
||||
std::cout << efectiveColor << std::right << std::setw(maxModelName) << std::setprecision(maxModelName - 4) << std::fixed << totals[model] << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
void BestResults::reportSingle(bool excel)
|
||||
{
|
||||
listFile();
|
||||
if (excel) {
|
||||
auto models = getModels();
|
||||
// Build the table of results
|
||||
json table = buildTableResults(models);
|
||||
std::vector<std::string> datasets = getDatasets(table.begin().value());
|
||||
BestResultsExcel excel_report(score, datasets);
|
||||
excel_report.reportSingle(model, path + bestResultFile());
|
||||
messageExcelFile(excel_report.getFileName());
|
||||
}
|
||||
}
|
||||
void BestResults::reportAll(bool excel)
|
||||
{
|
||||
auto models = getModels();
|
||||
// Build the table of results
|
||||
json table = buildTableResults(models);
|
||||
std::vector<std::string> datasets = getDatasets(table.begin().value());
|
||||
// Print the table of results
|
||||
printTableResults(models, table);
|
||||
// Compute the Friedman test
|
||||
std::map<std::string, std::map<std::string, float>> ranksModels;
|
||||
if (friedman) {
|
||||
Statistics stats(models, datasets, table, significance);
|
||||
auto result = stats.friedmanTest();
|
||||
stats.postHocHolmTest(result);
|
||||
ranksModels = stats.getRanks();
|
||||
}
|
||||
if (excel) {
|
||||
BestResultsExcel excel(score, datasets);
|
||||
excel.reportAll(models, table, ranksModels, friedman, significance);
|
||||
if (friedman) {
|
||||
int idx = -1;
|
||||
double min = 2000;
|
||||
// Find out the control model
|
||||
auto totals = std::vector<double>(models.size(), 0.0);
|
||||
for (const auto& dataset : datasets) {
|
||||
for (int i = 0; i < models.size(); ++i) {
|
||||
totals[i] += ranksModels[dataset][models[i]];
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < models.size(); ++i) {
|
||||
if (totals[i] < min) {
|
||||
min = totals[i];
|
||||
idx = i;
|
||||
}
|
||||
}
|
||||
model = models.at(idx);
|
||||
excel.reportSingle(model, path + bestResultFile());
|
||||
}
|
||||
messageExcelFile(excel.getFileName());
|
||||
}
|
||||
}
|
||||
void BestResults::messageExcelFile(const std::string& fileName)
|
||||
{
|
||||
std::cout << Colors::YELLOW() << "** Excel file generated: " << fileName << Colors::RESET() << std::endl;
|
||||
}
|
||||
}
|
36
src/best/BestResults.h
Normal file
36
src/best/BestResults.h
Normal file
@@ -0,0 +1,36 @@
|
||||
#ifndef BESTRESULTS_H
|
||||
#define BESTRESULTS_H
|
||||
#include <string>
|
||||
#include <nlohmann/json.hpp>
|
||||
using json = nlohmann::json;
|
||||
namespace platform {
|
||||
class BestResults {
|
||||
public:
|
||||
explicit BestResults(const std::string& path, const std::string& score, const std::string& model, bool friedman, double significance = 0.05)
|
||||
: path(path), score(score), model(model), friedman(friedman), significance(significance)
|
||||
{
|
||||
}
|
||||
std::string build();
|
||||
void reportSingle(bool excel);
|
||||
void reportAll(bool excel);
|
||||
void buildAll();
|
||||
private:
|
||||
std::vector<std::string> getModels();
|
||||
std::vector<std::string> getDatasets(json table);
|
||||
std::vector<std::string> loadResultFiles();
|
||||
void messageExcelFile(const std::string& fileName);
|
||||
json buildTableResults(std::vector<std::string> models);
|
||||
void printTableResults(std::vector<std::string> models, json table);
|
||||
std::string bestResultFile();
|
||||
json loadFile(const std::string& fileName);
|
||||
void listFile();
|
||||
std::string path;
|
||||
std::string score;
|
||||
std::string model;
|
||||
bool friedman;
|
||||
double significance;
|
||||
int maxModelName = 0;
|
||||
int maxDatasetName = 0;
|
||||
};
|
||||
}
|
||||
#endif //BESTRESULTS_H
|
300
src/best/BestResultsExcel.cc
Normal file
300
src/best/BestResultsExcel.cc
Normal file
@@ -0,0 +1,300 @@
|
||||
#include <sstream>
|
||||
#include "BestResultsExcel.h"
|
||||
#include "Paths.h"
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "Statistics.h"
|
||||
#include "ReportExcel.h"
|
||||
|
||||
namespace platform {
|
||||
json loadResultData(const std::string& fileName)
|
||||
{
|
||||
json data;
|
||||
std::ifstream resultData(fileName);
|
||||
if (resultData.is_open()) {
|
||||
data = json::parse(resultData);
|
||||
} else {
|
||||
throw std::invalid_argument("Unable to open result file. [" + fileName + "]");
|
||||
}
|
||||
return data;
|
||||
}
|
||||
std::string getColumnName(int colNum)
|
||||
{
|
||||
std::string columnName = "";
|
||||
if (colNum == 0)
|
||||
return "A";
|
||||
while (colNum > 0) {
|
||||
int modulo = colNum % 26;
|
||||
columnName = char(65 + modulo) + columnName;
|
||||
colNum = (int)((colNum - modulo) / 26);
|
||||
}
|
||||
return columnName;
|
||||
}
|
||||
BestResultsExcel::BestResultsExcel(const std::string& score, const std::vector<std::string>& datasets) : score(score), datasets(datasets)
|
||||
{
|
||||
file_name = "BestResults.xlsx";
|
||||
workbook = workbook_new(getFileName().c_str());
|
||||
setProperties("Best Results");
|
||||
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
datasetNameSize = std::max(datasetNameSize, maxDatasetName);
|
||||
}
|
||||
void BestResultsExcel::reportAll(const std::vector<std::string>& models, const json& table, const std::map<std::string, std::map<std::string, float>>& ranks, bool friedman, double significance)
|
||||
{
|
||||
this->table = table;
|
||||
this->models = models;
|
||||
ranksModels = ranks;
|
||||
this->friedman = friedman;
|
||||
this->significance = significance;
|
||||
worksheet = workbook_add_worksheet(workbook, "Best Results");
|
||||
int maxModelName = (*std::max_element(models.begin(), models.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
modelNameSize = std::max(modelNameSize, maxModelName);
|
||||
formatColumns();
|
||||
build();
|
||||
}
|
||||
void BestResultsExcel::reportSingle(const std::string& model, const std::string& fileName)
|
||||
{
|
||||
worksheet = workbook_add_worksheet(workbook, "Report");
|
||||
if (FILE* fileTest = fopen(fileName.c_str(), "r")) {
|
||||
fclose(fileTest);
|
||||
} else {
|
||||
std::cerr << "File " << fileName << " doesn't exist." << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
json data = loadResultData(fileName);
|
||||
|
||||
std::string title = "Best results for " + model;
|
||||
worksheet_merge_range(worksheet, 0, 0, 0, 4, title.c_str(), styles["headerFirst"]);
|
||||
// Body header
|
||||
row = 3;
|
||||
int col = 1;
|
||||
writeString(row, 0, "Nº", "bodyHeader");
|
||||
writeString(row, 1, "Dataset", "bodyHeader");
|
||||
writeString(row, 2, "Score", "bodyHeader");
|
||||
writeString(row, 3, "File", "bodyHeader");
|
||||
writeString(row, 4, "Hyperparameters", "bodyHeader");
|
||||
auto i = 0;
|
||||
std::string hyperparameters;
|
||||
int hypSize = 22;
|
||||
std::map<std::string, std::string> files; // map of files imported and their tabs
|
||||
for (auto const& item : data.items()) {
|
||||
row++;
|
||||
writeInt(row, 0, i++, "ints");
|
||||
writeString(row, 1, item.key().c_str(), "text");
|
||||
writeDouble(row, 2, item.value().at(0).get<double>(), "result");
|
||||
auto fileName = item.value().at(2).get<std::string>();
|
||||
std::string hyperlink = "";
|
||||
try {
|
||||
hyperlink = files.at(fileName);
|
||||
}
|
||||
catch (const std::out_of_range& oor) {
|
||||
auto tabName = "table_" + std::to_string(i);
|
||||
auto worksheetNew = workbook_add_worksheet(workbook, tabName.c_str());
|
||||
json data = loadResultData(Paths::results() + fileName);
|
||||
auto report = ReportExcel(data, false, workbook, worksheetNew);
|
||||
report.show();
|
||||
hyperlink = "#table_" + std::to_string(i);
|
||||
files[fileName] = hyperlink;
|
||||
}
|
||||
hyperlink += "!H" + std::to_string(i + 6);
|
||||
std::string fileNameText = "=HYPERLINK(\"" + hyperlink + "\",\"" + fileName + "\")";
|
||||
worksheet_write_formula(worksheet, row, 3, fileNameText.c_str(), efectiveStyle("text"));
|
||||
hyperparameters = item.value().at(1).dump();
|
||||
if (hyperparameters.size() > hypSize) {
|
||||
hypSize = hyperparameters.size();
|
||||
}
|
||||
writeString(row, 4, hyperparameters, "text");
|
||||
}
|
||||
row++;
|
||||
// Set Totals
|
||||
writeString(row, 1, "Total", "bodyHeader");
|
||||
std::stringstream oss;
|
||||
auto colName = getColumnName(2);
|
||||
oss << "=sum(" << colName << "5:" << colName << row << ")";
|
||||
worksheet_write_formula(worksheet, row, 2, oss.str().c_str(), styles["bodyHeader_odd"]);
|
||||
// Set format
|
||||
worksheet_freeze_panes(worksheet, 4, 2);
|
||||
std::vector<int> columns_sizes = { 5, datasetNameSize, modelNameSize, 66, hypSize + 1 };
|
||||
for (int i = 0; i < columns_sizes.size(); ++i) {
|
||||
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
|
||||
}
|
||||
}
|
||||
BestResultsExcel::~BestResultsExcel()
|
||||
{
|
||||
workbook_close(workbook);
|
||||
}
|
||||
void BestResultsExcel::formatColumns()
|
||||
{
|
||||
worksheet_freeze_panes(worksheet, 4, 2);
|
||||
std::vector<int> columns_sizes = { 5, datasetNameSize };
|
||||
for (int i = 0; i < models.size(); ++i) {
|
||||
columns_sizes.push_back(modelNameSize);
|
||||
}
|
||||
for (int i = 0; i < columns_sizes.size(); ++i) {
|
||||
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::addConditionalFormat(std::string formula)
|
||||
{
|
||||
// Add conditional format for max/min values in scores/ranks sheets
|
||||
lxw_format* custom_format = workbook_add_format(workbook);
|
||||
format_set_bg_color(custom_format, 0xFFC7CE);
|
||||
format_set_font_color(custom_format, 0x9C0006);
|
||||
// Create a conditional format object. A static object would also work.
|
||||
lxw_conditional_format* conditional_format = (lxw_conditional_format*)calloc(1, sizeof(lxw_conditional_format));
|
||||
conditional_format->type = LXW_CONDITIONAL_TYPE_FORMULA;
|
||||
std::string col = getColumnName(models.size() + 1);
|
||||
std::stringstream oss;
|
||||
oss << "=C5=" << formula << "($C5:$" << col << "5)";
|
||||
auto formulaValue = oss.str();
|
||||
conditional_format->value_string = formulaValue.c_str();
|
||||
conditional_format->format = custom_format;
|
||||
worksheet_conditional_format_range(worksheet, 4, 2, datasets.size() + 3, models.size() + 1, conditional_format);
|
||||
}
|
||||
void BestResultsExcel::build()
|
||||
{
|
||||
// Create Sheet with scores
|
||||
header(false);
|
||||
body(false);
|
||||
// Add conditional format for max values
|
||||
addConditionalFormat("max");
|
||||
footer(false);
|
||||
if (friedman) {
|
||||
// Create Sheet with ranks
|
||||
worksheet = workbook_add_worksheet(workbook, "Ranks");
|
||||
formatColumns();
|
||||
header(true);
|
||||
body(true);
|
||||
addConditionalFormat("min");
|
||||
footer(true);
|
||||
// Create Sheet with Friedman Test
|
||||
doFriedman();
|
||||
}
|
||||
}
|
||||
|
||||
void BestResultsExcel::header(bool ranks)
|
||||
{
|
||||
row = 0;
|
||||
std::string message = ranks ? "Ranks for score " + score : "Best results for " + score;
|
||||
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), message.c_str(), styles["headerFirst"]);
|
||||
// Body header
|
||||
row = 3;
|
||||
int col = 1;
|
||||
writeString(row, 0, "Nº", "bodyHeader");
|
||||
writeString(row, 1, "Dataset", "bodyHeader");
|
||||
for (const auto& model : models) {
|
||||
writeString(row, ++col, model.c_str(), "bodyHeader");
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::body(bool ranks)
|
||||
{
|
||||
row = 4;
|
||||
int i = 0;
|
||||
json origin = table.begin().value();
|
||||
for (auto const& item : origin.items()) {
|
||||
writeInt(row, 0, i++, "ints");
|
||||
writeString(row, 1, item.key().c_str(), "text");
|
||||
int col = 1;
|
||||
for (const auto& model : models) {
|
||||
double value = ranks ? ranksModels[item.key()][model] : table[model].at(item.key()).at(0).get<double>();
|
||||
writeDouble(row, ++col, value, "result");
|
||||
}
|
||||
++row;
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::footer(bool ranks)
|
||||
{
|
||||
// Set Totals
|
||||
writeString(row, 1, "Total", "bodyHeader");
|
||||
int col = 1;
|
||||
for (const auto& model : models) {
|
||||
std::stringstream oss;
|
||||
auto colName = getColumnName(col + 1);
|
||||
oss << "=SUM(" << colName << "5:" << colName << row << ")";
|
||||
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
|
||||
}
|
||||
if (ranks) {
|
||||
row++;
|
||||
writeString(row, 1, "Average ranks", "bodyHeader");
|
||||
int col = 1;
|
||||
for (const auto& model : models) {
|
||||
auto colName = getColumnName(col + 1);
|
||||
std::stringstream oss;
|
||||
oss << "=SUM(" << colName << "5:" << colName << row - 1 << ")/" << datasets.size();
|
||||
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
|
||||
}
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::doFriedman()
|
||||
{
|
||||
worksheet = workbook_add_worksheet(workbook, "Friedman");
|
||||
std::vector<int> columns_sizes = { 5, datasetNameSize };
|
||||
for (int i = 0; i < models.size(); ++i) {
|
||||
columns_sizes.push_back(modelNameSize);
|
||||
}
|
||||
for (int i = 0; i < columns_sizes.size(); ++i) {
|
||||
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
|
||||
}
|
||||
worksheet_merge_range(worksheet, 0, 0, 0, 7, "Friedman Test", styles["headerFirst"]);
|
||||
row = 2;
|
||||
Statistics stats(models, datasets, table, significance, false);
|
||||
auto result = stats.friedmanTest();
|
||||
stats.postHocHolmTest(result);
|
||||
auto friedmanResult = stats.getFriedmanResult();
|
||||
auto holmResult = stats.getHolmResult();
|
||||
worksheet_merge_range(worksheet, row, 0, row, 7, "Null hypothesis: H0 'There is no significant differences between all the classifiers.'", styles["headerSmall"]);
|
||||
row += 2;
|
||||
writeString(row, 1, "Friedman Q", "bodyHeader");
|
||||
writeDouble(row, 2, friedmanResult.statistic, "bodyHeader");
|
||||
row++;
|
||||
writeString(row, 1, "Critical χ2 value", "bodyHeader");
|
||||
writeDouble(row, 2, friedmanResult.criticalValue, "bodyHeader");
|
||||
row++;
|
||||
writeString(row, 1, "p-value", "bodyHeader");
|
||||
writeDouble(row, 2, friedmanResult.pvalue, "bodyHeader");
|
||||
writeString(row, 3, friedmanResult.reject ? "<" : ">", "bodyHeader");
|
||||
writeDouble(row, 4, significance, "bodyHeader");
|
||||
writeString(row, 5, friedmanResult.reject ? "Reject H0" : "Accept H0", "bodyHeader");
|
||||
row += 3;
|
||||
worksheet_merge_range(worksheet, row, 0, row, 7, "Holm Test", styles["headerFirst"]);
|
||||
row += 2;
|
||||
worksheet_merge_range(worksheet, row, 0, row, 7, "Null hypothesis: H0 'There is no significant differences between the control model and the other models.'", styles["headerSmall"]);
|
||||
row += 2;
|
||||
std::string controlModel = "Control Model: " + holmResult.model;
|
||||
worksheet_merge_range(worksheet, row, 1, row, 7, controlModel.c_str(), styles["bodyHeader_odd"]);
|
||||
row++;
|
||||
writeString(row, 1, "Model", "bodyHeader");
|
||||
writeString(row, 2, "p-value", "bodyHeader");
|
||||
writeString(row, 3, "Rank", "bodyHeader");
|
||||
writeString(row, 4, "Win", "bodyHeader");
|
||||
writeString(row, 5, "Tie", "bodyHeader");
|
||||
writeString(row, 6, "Loss", "bodyHeader");
|
||||
writeString(row, 7, "Reject H0", "bodyHeader");
|
||||
row++;
|
||||
bool first = true;
|
||||
for (const auto& item : holmResult.holmLines) {
|
||||
writeString(row, 1, item.model, "text");
|
||||
if (first) {
|
||||
// Control model info
|
||||
first = false;
|
||||
writeString(row, 2, "", "text");
|
||||
writeDouble(row, 3, item.rank, "result");
|
||||
writeString(row, 4, "", "text");
|
||||
writeString(row, 5, "", "text");
|
||||
writeString(row, 6, "", "text");
|
||||
writeString(row, 7, "", "textCentered");
|
||||
} else {
|
||||
// Rest of the models info
|
||||
writeDouble(row, 2, item.pvalue, "result");
|
||||
writeDouble(row, 3, item.rank, "result");
|
||||
writeInt(row, 4, item.wtl.win, "ints");
|
||||
writeInt(row, 5, item.wtl.tie, "ints");
|
||||
writeInt(row, 6, item.wtl.loss, "ints");
|
||||
writeString(row, 7, item.reject ? "Yes" : "No", "textCentered");
|
||||
}
|
||||
row++;
|
||||
}
|
||||
// set column width for the 5th and the 7th column
|
||||
worksheet_set_column(worksheet, 4, 5, 10, NULL);
|
||||
worksheet_set_column(worksheet, 6, 7, 10, NULL);
|
||||
}
|
||||
}
|
37
src/best/BestResultsExcel.h
Normal file
37
src/best/BestResultsExcel.h
Normal file
@@ -0,0 +1,37 @@
|
||||
#ifndef BESTRESULTS_EXCEL_H
|
||||
#define BESTRESULTS_EXCEL_H
|
||||
#include "ExcelFile.h"
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
namespace platform {
|
||||
|
||||
class BestResultsExcel : public ExcelFile {
|
||||
public:
|
||||
BestResultsExcel(const std::string& score, const std::vector<std::string>& datasets);
|
||||
~BestResultsExcel();
|
||||
void reportAll(const std::vector<std::string>& models, const json& table, const std::map<std::string, std::map<std::string, float>>& ranks, bool friedman, double significance);
|
||||
void reportSingle(const std::string& model, const std::string& fileName);
|
||||
private:
|
||||
void build();
|
||||
void header(bool ranks);
|
||||
void body(bool ranks);
|
||||
void footer(bool ranks);
|
||||
void formatColumns();
|
||||
void doFriedman();
|
||||
void addConditionalFormat(std::string formula);
|
||||
std::string score;
|
||||
std::vector<std::string> models;
|
||||
std::vector<std::string> datasets;
|
||||
json table;
|
||||
std::map<std::string, std::map<std::string, float>> ranksModels;
|
||||
bool friedman;
|
||||
double significance;
|
||||
int modelNameSize = 12; // Min size of the column
|
||||
int datasetNameSize = 25; // Min size of the column
|
||||
};
|
||||
}
|
||||
#endif //BESTRESULTS_EXCEL_H
|
28
src/best/BestScore.h
Normal file
28
src/best/BestScore.h
Normal file
@@ -0,0 +1,28 @@
|
||||
#ifndef BESTSCORE_H
|
||||
#define BESTSCORE_H
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <utility>
|
||||
#include "DotEnv.h"
|
||||
namespace platform {
|
||||
class BestScore {
|
||||
public:
|
||||
static std::pair<std::string, double> getScore(const std::string& metric)
|
||||
{
|
||||
static std::map<std::pair<std::string, std::string>, std::pair<std::string, double>> data = {
|
||||
{{"discretiz", "accuracy"}, {"STree_default (linear-ovo)", 22.109799}},
|
||||
{{"odte", "accuracy"}, {"STree_default (linear-ovo)", 22.109799}},
|
||||
};
|
||||
auto env = platform::DotEnv();
|
||||
std::string experiment = env.get("experiment");
|
||||
try {
|
||||
return data[{experiment, metric}];
|
||||
}
|
||||
catch (...) {
|
||||
return { "", 0.0 };
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
252
src/best/Statistics.cc
Normal file
252
src/best/Statistics.cc
Normal file
@@ -0,0 +1,252 @@
|
||||
#include <sstream>
|
||||
#include "Statistics.h"
|
||||
#include "Colors.h"
|
||||
#include "Symbols.h"
|
||||
#include <boost/math/distributions/chi_squared.hpp>
|
||||
#include <boost/math/distributions/normal.hpp>
|
||||
#include "CLocale.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
|
||||
Statistics::Statistics(const std::vector<std::string>& models, const std::vector<std::string>& datasets, const json& data, double significance, bool output) :
|
||||
models(models), datasets(datasets), data(data), significance(significance), output(output)
|
||||
{
|
||||
nModels = models.size();
|
||||
nDatasets = datasets.size();
|
||||
auto temp = ConfigLocale();
|
||||
}
|
||||
|
||||
void Statistics::fit()
|
||||
{
|
||||
if (nModels < 3 || nDatasets < 3) {
|
||||
std::cerr << "nModels: " << nModels << std::endl;
|
||||
std::cerr << "nDatasets: " << nDatasets << std::endl;
|
||||
throw std::runtime_error("Can't make the Friedman test with less than 3 models and/or less than 3 datasets.");
|
||||
}
|
||||
ranksModels.clear();
|
||||
computeRanks();
|
||||
// Set the control model as the one with the lowest average rank
|
||||
controlIdx = distance(ranks.begin(), min_element(ranks.begin(), ranks.end(), [](const auto& l, const auto& r) { return l.second < r.second; }));
|
||||
computeWTL();
|
||||
maxModelName = (*std::max_element(models.begin(), models.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
maxDatasetName = (*std::max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
fitted = true;
|
||||
}
|
||||
std::map<std::string, float> assignRanks(std::vector<std::pair<std::string, double>>& ranksOrder)
|
||||
{
|
||||
// sort the ranksOrder std::vector by value
|
||||
std::sort(ranksOrder.begin(), ranksOrder.end(), [](const std::pair<std::string, double>& a, const std::pair<std::string, double>& b) {
|
||||
return a.second > b.second;
|
||||
});
|
||||
//Assign ranks to values and if they are the same they share the same averaged rank
|
||||
std::map<std::string, float> ranks;
|
||||
for (int i = 0; i < ranksOrder.size(); i++) {
|
||||
ranks[ranksOrder[i].first] = i + 1.0;
|
||||
}
|
||||
int i = 0;
|
||||
while (i < static_cast<int>(ranksOrder.size())) {
|
||||
int j = i + 1;
|
||||
int sumRanks = ranks[ranksOrder[i].first];
|
||||
while (j < static_cast<int>(ranksOrder.size()) && ranksOrder[i].second == ranksOrder[j].second) {
|
||||
sumRanks += ranks[ranksOrder[j++].first];
|
||||
}
|
||||
if (j > i + 1) {
|
||||
float averageRank = (float)sumRanks / (j - i);
|
||||
for (int k = i; k < j; k++) {
|
||||
ranks[ranksOrder[k].first] = averageRank;
|
||||
}
|
||||
}
|
||||
i = j;
|
||||
}
|
||||
return ranks;
|
||||
}
|
||||
void Statistics::computeRanks()
|
||||
{
|
||||
std::map<std::string, float> ranksLine;
|
||||
for (const auto& dataset : datasets) {
|
||||
std::vector<std::pair<std::string, double>> ranksOrder;
|
||||
for (const auto& model : models) {
|
||||
double value = data[model].at(dataset).at(0).get<double>();
|
||||
ranksOrder.push_back({ model, value });
|
||||
}
|
||||
// Assign the ranks
|
||||
ranksLine = assignRanks(ranksOrder);
|
||||
// Store the ranks of the dataset
|
||||
ranksModels[dataset] = ranksLine;
|
||||
if (ranks.size() == 0) {
|
||||
ranks = ranksLine;
|
||||
} else {
|
||||
for (const auto& rank : ranksLine) {
|
||||
ranks[rank.first] += rank.second;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Average the ranks
|
||||
for (const auto& rank : ranks) {
|
||||
ranks[rank.first] /= nDatasets;
|
||||
}
|
||||
}
|
||||
void Statistics::computeWTL()
|
||||
{
|
||||
// Compute the WTL matrix
|
||||
for (int i = 0; i < nModels; ++i) {
|
||||
wtl[i] = { 0, 0, 0 };
|
||||
}
|
||||
json origin = data.begin().value();
|
||||
for (auto const& item : origin.items()) {
|
||||
auto controlModel = models.at(controlIdx);
|
||||
double controlValue = data[controlModel].at(item.key()).at(0).get<double>();
|
||||
for (int i = 0; i < nModels; ++i) {
|
||||
if (i == controlIdx) {
|
||||
continue;
|
||||
}
|
||||
double value = data[models[i]].at(item.key()).at(0).get<double>();
|
||||
if (value < controlValue) {
|
||||
wtl[i].win++;
|
||||
} else if (value == controlValue) {
|
||||
wtl[i].tie++;
|
||||
} else {
|
||||
wtl[i].loss++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Statistics::postHocHolmTest(bool friedmanResult)
|
||||
{
|
||||
if (!fitted) {
|
||||
fit();
|
||||
}
|
||||
std::stringstream oss;
|
||||
// Reference https://link.springer.com/article/10.1007/s44196-022-00083-8
|
||||
// Post-hoc Holm test
|
||||
// Calculate the p-value for the models paired with the control model
|
||||
std::map<int, double> stats; // p-value of each model paired with the control model
|
||||
boost::math::normal dist(0.0, 1.0);
|
||||
double diff = sqrt(nModels * (nModels + 1) / (6.0 * nDatasets));
|
||||
for (int i = 0; i < nModels; i++) {
|
||||
if (i == controlIdx) {
|
||||
stats[i] = 0.0;
|
||||
continue;
|
||||
}
|
||||
double z = abs(ranks.at(models[controlIdx]) - ranks.at(models[i])) / diff;
|
||||
double p_value = (long double)2 * (1 - cdf(dist, z));
|
||||
stats[i] = p_value;
|
||||
}
|
||||
// Sort the models by p-value
|
||||
std::vector<std::pair<int, double>> statsOrder;
|
||||
for (const auto& stat : stats) {
|
||||
statsOrder.push_back({ stat.first, stat.second });
|
||||
}
|
||||
std::sort(statsOrder.begin(), statsOrder.end(), [](const std::pair<int, double>& a, const std::pair<int, double>& b) {
|
||||
return a.second < b.second;
|
||||
});
|
||||
|
||||
// Holm adjustment
|
||||
for (int i = 0; i < statsOrder.size(); ++i) {
|
||||
auto item = statsOrder.at(i);
|
||||
double before = i == 0 ? 0.0 : statsOrder.at(i - 1).second;
|
||||
double p_value = std::min((double)1.0, item.second * (nModels - i));
|
||||
p_value = std::max(before, p_value);
|
||||
statsOrder[i] = { item.first, p_value };
|
||||
}
|
||||
holmResult.model = models.at(controlIdx);
|
||||
auto color = friedmanResult ? Colors::CYAN() : Colors::YELLOW();
|
||||
oss << color;
|
||||
oss << " *************************************************************************************************************" << std::endl;
|
||||
oss << " Post-hoc Holm test: H0: 'There is no significant differences between the control model and the other models.'" << std::endl;
|
||||
oss << " Control model: " << models.at(controlIdx) << std::endl;
|
||||
oss << " " << std::left << std::setw(maxModelName) << std::string("Model") << " p-value rank win tie loss Status" << std::endl;
|
||||
oss << " " << std::string(maxModelName, '=') << " ============ ========= === === ==== =============" << std::endl;
|
||||
// sort ranks from lowest to highest
|
||||
std::vector<std::pair<std::string, float>> ranksOrder;
|
||||
for (const auto& rank : ranks) {
|
||||
ranksOrder.push_back({ rank.first, rank.second });
|
||||
}
|
||||
std::sort(ranksOrder.begin(), ranksOrder.end(), [](const std::pair<std::string, float>& a, const std::pair<std::string, float>& b) {
|
||||
return a.second < b.second;
|
||||
});
|
||||
// Show the control model info.
|
||||
oss << " " << Colors::BLUE() << std::left << std::setw(maxModelName) << ranksOrder.at(0).first << " ";
|
||||
oss << std::setw(12) << " " << std::setprecision(7) << std::fixed << " " << ranksOrder.at(0).second << std::endl;
|
||||
for (const auto& item : ranksOrder) {
|
||||
auto idx = distance(models.begin(), find(models.begin(), models.end(), item.first));
|
||||
double pvalue = 0.0;
|
||||
for (const auto& stat : statsOrder) {
|
||||
if (stat.first == idx) {
|
||||
pvalue = stat.second;
|
||||
}
|
||||
}
|
||||
holmResult.holmLines.push_back({ item.first, pvalue, item.second, wtl.at(idx), pvalue < significance });
|
||||
if (item.first == models.at(controlIdx)) {
|
||||
continue;
|
||||
}
|
||||
auto colorStatus = pvalue > significance ? Colors::GREEN() : Colors::MAGENTA();
|
||||
auto status = pvalue > significance ? Symbols::check_mark : Symbols::cross;
|
||||
auto textStatus = pvalue > significance ? " accepted H0" : " rejected H0";
|
||||
oss << " " << colorStatus << std::left << std::setw(maxModelName) << item.first << " ";
|
||||
oss << std::setprecision(6) << std::scientific << pvalue << std::setprecision(7) << std::fixed << " " << item.second;
|
||||
oss << " " << std::right << std::setw(3) << wtl.at(idx).win << " " << std::setw(3) << wtl.at(idx).tie << " " << std::setw(4) << wtl.at(idx).loss;
|
||||
oss << " " << status << textStatus << std::endl;
|
||||
}
|
||||
oss << color << " *************************************************************************************************************" << std::endl;
|
||||
oss << Colors::RESET();
|
||||
if (output) {
|
||||
std::cout << oss.str();
|
||||
}
|
||||
}
|
||||
bool Statistics::friedmanTest()
|
||||
{
|
||||
if (!fitted) {
|
||||
fit();
|
||||
}
|
||||
std::stringstream oss;
|
||||
// Friedman test
|
||||
// Calculate the Friedman statistic
|
||||
oss << Colors::BLUE() << std::endl;
|
||||
oss << "***************************************************************************************************************" << std::endl;
|
||||
oss << Colors::GREEN() << "Friedman test: H0: 'There is no significant differences between all the classifiers.'" << Colors::BLUE() << std::endl;
|
||||
double degreesOfFreedom = nModels - 1.0;
|
||||
double sumSquared = 0;
|
||||
for (const auto& rank : ranks) {
|
||||
sumSquared += pow(rank.second, 2);
|
||||
}
|
||||
// Compute the Friedman statistic as in https://link.springer.com/article/10.1007/s44196-022-00083-8
|
||||
double friedmanQ = 12.0 * nDatasets / (nModels * (nModels + 1)) * (sumSquared - (nModels * pow(nModels + 1, 2)) / 4);
|
||||
// Calculate the critical value
|
||||
boost::math::chi_squared chiSquared(degreesOfFreedom);
|
||||
long double p_value = (long double)1.0 - cdf(chiSquared, friedmanQ);
|
||||
double criticalValue = quantile(chiSquared, 1 - significance);
|
||||
oss << "Friedman statistic: " << friedmanQ << std::endl;
|
||||
oss << "Critical χ2 Value for df=" << std::fixed << (int)degreesOfFreedom
|
||||
<< " and alpha=" << std::setprecision(2) << std::fixed << significance << ": " << std::setprecision(7) << std::scientific << criticalValue << std::endl;
|
||||
oss << "p-value: " << std::scientific << p_value << " is " << (p_value < significance ? "less" : "greater") << " than " << std::setprecision(2) << std::fixed << significance << std::endl;
|
||||
bool result;
|
||||
if (p_value < significance) {
|
||||
oss << Colors::GREEN() << "The null hypothesis H0 is rejected." << std::endl;
|
||||
result = true;
|
||||
} else {
|
||||
oss << Colors::YELLOW() << "The null hypothesis H0 is accepted. Computed p-values will not be significant." << std::endl;
|
||||
result = false;
|
||||
}
|
||||
oss << Colors::BLUE() << "***************************************************************************************************************" << Colors::RESET() << std::endl;
|
||||
if (output) {
|
||||
std::cout << oss.str();
|
||||
}
|
||||
friedmanResult = { friedmanQ, criticalValue, p_value, result };
|
||||
return result;
|
||||
}
|
||||
FriedmanResult& Statistics::getFriedmanResult()
|
||||
{
|
||||
return friedmanResult;
|
||||
}
|
||||
HolmResult& Statistics::getHolmResult()
|
||||
{
|
||||
return holmResult;
|
||||
}
|
||||
std::map<std::string, std::map<std::string, float>>& Statistics::getRanks()
|
||||
{
|
||||
return ranksModels;
|
||||
}
|
||||
} // namespace platform
|
63
src/best/Statistics.h
Normal file
63
src/best/Statistics.h
Normal file
@@ -0,0 +1,63 @@
|
||||
#ifndef STATISTICS_H
|
||||
#define STATISTICS_H
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
namespace platform {
|
||||
struct WTL {
|
||||
int win;
|
||||
int tie;
|
||||
int loss;
|
||||
};
|
||||
struct FriedmanResult {
|
||||
double statistic;
|
||||
double criticalValue;
|
||||
long double pvalue;
|
||||
bool reject;
|
||||
};
|
||||
struct HolmLine {
|
||||
std::string model;
|
||||
long double pvalue;
|
||||
double rank;
|
||||
WTL wtl;
|
||||
bool reject;
|
||||
};
|
||||
struct HolmResult {
|
||||
std::string model;
|
||||
std::vector<HolmLine> holmLines;
|
||||
};
|
||||
class Statistics {
|
||||
public:
|
||||
Statistics(const std::vector<std::string>& models, const std::vector<std::string>& datasets, const json& data, double significance = 0.05, bool output = true);
|
||||
bool friedmanTest();
|
||||
void postHocHolmTest(bool friedmanResult);
|
||||
FriedmanResult& getFriedmanResult();
|
||||
HolmResult& getHolmResult();
|
||||
std::map<std::string, std::map<std::string, float>>& getRanks();
|
||||
private:
|
||||
void fit();
|
||||
void computeRanks();
|
||||
void computeWTL();
|
||||
const std::vector<std::string>& models;
|
||||
const std::vector<std::string>& datasets;
|
||||
const json& data;
|
||||
double significance;
|
||||
bool output;
|
||||
bool fitted = false;
|
||||
int nModels = 0;
|
||||
int nDatasets = 0;
|
||||
int controlIdx = 0;
|
||||
std::map<int, WTL> wtl;
|
||||
std::map<std::string, float> ranks;
|
||||
int maxModelName = 0;
|
||||
int maxDatasetName = 0;
|
||||
FriedmanResult friedmanResult;
|
||||
HolmResult holmResult;
|
||||
std::map<std::string, std::map<std::string, float>> ranksModels;
|
||||
};
|
||||
}
|
||||
#endif // !STATISTICS_H
|
70
src/best/b_best.cc
Normal file
70
src/best/b_best.cc
Normal file
@@ -0,0 +1,70 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include "Paths.h"
|
||||
#include "BestResults.h"
|
||||
#include "Colors.h"
|
||||
#include "config.h"
|
||||
|
||||
void manageArguments(argparse::ArgumentParser& program)
|
||||
{
|
||||
program.add_argument("-m", "--model").default_value("").help("Filter results of the selected model) (any for all models)");
|
||||
program.add_argument("-s", "--score").default_value("accuracy").help("Filter results of the score name supplied");
|
||||
program.add_argument("--friedman").help("Friedman test").default_value(false).implicit_value(true);
|
||||
program.add_argument("--excel").help("Output to excel").default_value(false).implicit_value(true);
|
||||
program.add_argument("--level").help("significance level").default_value(0.05).scan<'g', double>().action([](const std::string& value) {
|
||||
try {
|
||||
auto k = std::stod(value);
|
||||
if (k < 0.01 || k > 0.15) {
|
||||
throw std::runtime_error("Significance level hast to be a number in [0.01, 0.15]");
|
||||
}
|
||||
return k;
|
||||
}
|
||||
catch (const std::runtime_error& err) {
|
||||
throw std::runtime_error(err.what());
|
||||
}
|
||||
catch (...) {
|
||||
throw std::runtime_error("Number of folds must be an decimal number");
|
||||
}});
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
argparse::ArgumentParser program("b_best", { project_version.begin(), project_version.end() });
|
||||
manageArguments(program);
|
||||
std::string model, score;
|
||||
bool build, report, friedman, excel;
|
||||
double level;
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
model = program.get<std::string>("model");
|
||||
score = program.get<std::string>("score");
|
||||
friedman = program.get<bool>("friedman");
|
||||
excel = program.get<bool>("excel");
|
||||
level = program.get<double>("level");
|
||||
if (model == "" || score == "") {
|
||||
throw std::runtime_error("Model and score name must be supplied");
|
||||
}
|
||||
if (friedman && model != "any") {
|
||||
std::cerr << "Friedman test can only be used with all models" << std::endl;
|
||||
std::cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
catch (const std::exception& err) {
|
||||
std::cerr << err.what() << std::endl;
|
||||
std::cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
// Generate report
|
||||
auto results = platform::BestResults(platform::Paths::results(), score, model, friedman, level);
|
||||
if (model == "any") {
|
||||
results.buildAll();
|
||||
results.reportAll(excel);
|
||||
} else {
|
||||
std::string fileName = results.build();
|
||||
std::cout << Colors::GREEN() << fileName << " created!" << Colors::RESET() << std::endl;
|
||||
results.reportSingle(excel);
|
||||
}
|
||||
std::cout << Colors::RESET();
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user