Create Xaode2 and add initializer factor in predict
This commit is contained in:
2
Makefile
2
Makefile
@@ -38,7 +38,7 @@ setup: ## Install dependencies for tests and coverage
|
||||
fi
|
||||
|
||||
dest ?= ${HOME}/bin
|
||||
main: ## Build the main target
|
||||
main: ## Build only the b_main target
|
||||
@cmake --build $(f_release) -t b_main --parallel
|
||||
@cp $(f_release)/src/b_main $(dest)
|
||||
|
||||
|
@@ -15,6 +15,7 @@
|
||||
#include "common/Timer.hpp"
|
||||
#include "CountingSemaphore.hpp"
|
||||
#include "Xaode.hpp"
|
||||
#include "Xaode2.hpp"
|
||||
|
||||
namespace platform {
|
||||
class ExpClf : public bayesnet::Boost {
|
||||
@@ -44,7 +45,8 @@ namespace platform {
|
||||
void remove_last_parent();
|
||||
protected:
|
||||
bool debug = false;
|
||||
Xaode aode_;
|
||||
// Xaode aode;
|
||||
Xaode2 aode_;
|
||||
torch::Tensor weights_;
|
||||
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
||||
inline void normalize_weights(int num_instances)
|
||||
|
@@ -18,7 +18,6 @@ namespace platform {
|
||||
class XBAODE : public ExpClf {
|
||||
public:
|
||||
XBAODE();
|
||||
virtual ~XBAODE() override = default;
|
||||
std::string getVersion() override { return version; };
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
|
||||
|
464
src/experimental_clfs/Xaode2.hpp
Normal file
464
src/experimental_clfs/Xaode2.hpp
Normal file
@@ -0,0 +1,464 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
// Based on the Geoff. I. Webb A1DE java algorithm
|
||||
// https://weka.sourceforge.io/packageMetaData/AnDE/Latest.html
|
||||
|
||||
#ifndef XAODE2_H
|
||||
#define XAODE2_H
|
||||
#include <vector>
|
||||
#include <stdexcept>
|
||||
#include <algorithm>
|
||||
#include <numeric>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <torch/torch.h>
|
||||
|
||||
namespace platform {
|
||||
class Xaode2 {
|
||||
public:
|
||||
// -------------------------------------------------------
|
||||
// The Xaode can be EMPTY (just created), in COUNTS mode (accumulating raw counts)
|
||||
// or PROBS mode (storing conditional probabilities).
|
||||
enum class MatrixState {
|
||||
EMPTY,
|
||||
COUNTS,
|
||||
PROBS
|
||||
};
|
||||
std::vector<double> significance_models_;
|
||||
Xaode2() : nFeatures_{ 0 }, statesClass_{ 0 }, matrixState_{ MatrixState::EMPTY } {}
|
||||
// -------------------------------------------------------
|
||||
// fit
|
||||
// -------------------------------------------------------
|
||||
//
|
||||
// Classifiers interface
|
||||
// all parameter decide if the model is initialized with all the parents active or none of them
|
||||
//
|
||||
// states.size() = nFeatures + 1,
|
||||
// where states.back() = number of class states.
|
||||
//
|
||||
// We'll store:
|
||||
// 1) p(x_i=si | c) in classFeatureProbs_
|
||||
// 2) p(x_j=sj | c, x_i=si) in data_, with i<j => i is "superparent," j is "child."
|
||||
//
|
||||
// Internally, in COUNTS mode, data_ accumulates raw counts, then
|
||||
// computeProbabilities(...) normalizes them into conditionals.
|
||||
void fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bool all_parents)
|
||||
{
|
||||
int num_instances = X[0].size();
|
||||
nFeatures_ = X.size();
|
||||
|
||||
significance_models_.resize(nFeatures_, (all_parents ? 1.0 : 0.0));
|
||||
for (int i = 0; i < nFeatures_; i++) {
|
||||
if (all_parents) active_parents.push_back(i);
|
||||
states_.push_back(*max_element(X[i].begin(), X[i].end()) + 1);
|
||||
}
|
||||
states_.push_back(*max_element(y.begin(), y.end()) + 1);
|
||||
//
|
||||
statesClass_ = states_.back();
|
||||
classCounts_.resize(statesClass_, 0.0);
|
||||
classPriors_.resize(statesClass_, 0.0);
|
||||
//
|
||||
// Initialize data structures
|
||||
//
|
||||
active_parents.resize(nFeatures_);
|
||||
int totalStates = std::accumulate(states_.begin(), states_.end(), 0) - statesClass_;
|
||||
|
||||
// For p(x_i=si | c), we store them in a 1D array classFeatureProbs_ after we compute.
|
||||
// We'll need the offsets for each feature i in featureClassOffset_.
|
||||
featureClassOffset_.resize(nFeatures_);
|
||||
// We'll store p(x_child=sj | c, x_sp=si) for each pair (i<j).
|
||||
// So data_(i, si, j, sj, c) indexes into a big 1D array with an offset.
|
||||
// For p(x_i=si | c), we store them in a 1D array classFeatureProbs_ after we compute.
|
||||
// We'll need the offsets for each feature i in featureClassOffset_.
|
||||
featureClassOffset_.resize(nFeatures_);
|
||||
pairOffset_.resize(totalStates);
|
||||
int feature_offset = 0;
|
||||
int runningOffset = 0;
|
||||
int feature = 0, index = 0;
|
||||
for (int i = 0; i < nFeatures_; ++i) {
|
||||
featureClassOffset_[i] = feature_offset;
|
||||
feature_offset += states_[i];
|
||||
for (int j = 0; j < states_[i]; ++j) {
|
||||
pairOffset_[feature++] = index;
|
||||
index += runningOffset;
|
||||
}
|
||||
runningOffset += states_[i];
|
||||
}
|
||||
int totalSize = index * statesClass_;
|
||||
data_.resize(totalSize);
|
||||
dataOpp_.resize(totalSize);
|
||||
|
||||
classFeatureCounts_.resize(feature_offset * statesClass_);
|
||||
classFeatureProbs_.resize(feature_offset * statesClass_);
|
||||
|
||||
matrixState_ = MatrixState::COUNTS;
|
||||
//
|
||||
// Add samples
|
||||
//
|
||||
std::vector<int> instance(nFeatures_ + 1);
|
||||
for (int n_instance = 0; n_instance < num_instances; n_instance++) {
|
||||
for (int feature = 0; feature < nFeatures_; feature++) {
|
||||
instance[feature] = X[feature][n_instance];
|
||||
}
|
||||
instance[nFeatures_] = y[n_instance];
|
||||
addSample(instance, weights[n_instance].item<double>());
|
||||
}
|
||||
//alpha_ = 1 / num_instances;
|
||||
initializer_ = std::numeric_limits<double>::max() / (nFeatures_ * nFeatures_);
|
||||
computeProbabilities();
|
||||
}
|
||||
// Optional: print a quick summary
|
||||
void show() const
|
||||
{
|
||||
std::cout << "-------- Xaode.show() --------" << std::endl
|
||||
<< "- nFeatures = " << nFeatures_ << std::endl
|
||||
<< "- statesClass = " << statesClass_ << std::endl
|
||||
<< "- matrixState = " << (matrixState_ == MatrixState::COUNTS ? "COUNTS" : "PROBS") << std::endl;
|
||||
std::cout << "- states: size: " << states_.size() << std::endl;
|
||||
for (int s : states_) std::cout << s << " "; std::cout << std::endl;
|
||||
std::cout << "- classCounts: size: " << classCounts_.size() << std::endl;
|
||||
for (double cc : classCounts_) std::cout << cc << " "; std::cout << std::endl;
|
||||
std::cout << "- classFeatureCounts: size: " << classFeatureCounts_.size() << std::endl;
|
||||
for (double cfc : classFeatureCounts_) std::cout << cfc << " "; std::cout << std::endl;
|
||||
std::cout << "- classFeatureProbs: size: " << classFeatureProbs_.size() << std::endl;
|
||||
for (double cfp : classFeatureProbs_) std::cout << cfp << " "; std::cout << std::endl;
|
||||
std::cout << "- featureClassOffset: size: " << featureClassOffset_.size() << std::endl;
|
||||
for (int f : featureClassOffset_) std::cout << f << " "; std::cout << std::endl;
|
||||
std::cout << "- pairOffset_: size: " << pairOffset_.size() << std::endl;
|
||||
for (int p : pairOffset_) std::cout << p << " "; std::cout << std::endl;
|
||||
std::cout << "- data: size: " << data_.size() << std::endl;
|
||||
for (double d : data_) std::cout << d << " "; std::cout << std::endl;
|
||||
std::cout << "--------------------------------" << std::endl;
|
||||
}
|
||||
// -------------------------------------------------------
|
||||
// addSample (only in COUNTS mode)
|
||||
// -------------------------------------------------------
|
||||
//
|
||||
// instance should have the class at the end.
|
||||
//
|
||||
void addSample(const std::vector<int>& instance, double weight)
|
||||
{
|
||||
//
|
||||
// (A) increment classCounts_
|
||||
// (B) increment feature–class counts => for p(x_i|c)
|
||||
// (C) increment pair (superparent= i, child= j) counts => data_
|
||||
//
|
||||
|
||||
// if (matrixState_ != MatrixState::COUNTS) {
|
||||
// throw std::logic_error("addSample: not in COUNTS mode.");
|
||||
// }
|
||||
// if (static_cast<int>(instance.size()) != nFeatures_ + 1) {
|
||||
// throw std::invalid_argument("addSample: instance.size() must be nFeatures_ + 1.");
|
||||
// }
|
||||
|
||||
int c = instance.back();
|
||||
// if (c < 0 || c >= statesClass_) {
|
||||
// throw std::out_of_range("addSample: class index out of range.");
|
||||
// }
|
||||
if (weight <= 0.0) {
|
||||
return;
|
||||
}
|
||||
// (A) increment classCounts_
|
||||
classCounts_[c] += weight;
|
||||
|
||||
// (B,C)
|
||||
// We'll store raw counts now and turn them into p(child| c, superparent) later.
|
||||
int idx, fcIndex, si, sj, i_offset;
|
||||
for (int i = 0; i < nFeatures_; ++i) {
|
||||
si = instance[i];
|
||||
// (B) increment feature–class counts => for p(x_i|c)
|
||||
fcIndex = (featureClassOffset_[i] + si) * statesClass_ + c;
|
||||
classFeatureCounts_[fcIndex] += weight;
|
||||
// (C) increment pair (superparent= i, child= j) counts => data_
|
||||
i_offset = pairOffset_[featureClassOffset_[i] + si];
|
||||
for (int j = 0; j < i; ++j) {
|
||||
sj = instance[j];
|
||||
idx = (i_offset + featureClassOffset_[j] + sj) * statesClass_ + c;
|
||||
data_[idx] += weight;
|
||||
}
|
||||
}
|
||||
}
|
||||
// -------------------------------------------------------
|
||||
// computeProbabilities
|
||||
// -------------------------------------------------------
|
||||
//
|
||||
// Once all samples are added in COUNTS mode, call this to:
|
||||
// 1) compute p(c) => classPriors_
|
||||
// 2) compute p(x_i=si | c) => classFeatureProbs_
|
||||
// 3) compute p(x_j=sj | c, x_i=si) => data_ (for i<j) dataOpp_ (for i>j)
|
||||
//
|
||||
void computeProbabilities()
|
||||
{
|
||||
if (matrixState_ != MatrixState::COUNTS) {
|
||||
throw std::logic_error("computeProbabilities: must be in COUNTS mode.");
|
||||
}
|
||||
double totalCount = std::accumulate(classCounts_.begin(), classCounts_.end(), 0.0);
|
||||
// (1) p(c)
|
||||
if (totalCount <= 0.0) {
|
||||
// fallback => uniform
|
||||
double unif = 1.0 / statesClass_;
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
classPriors_[c] = unif;
|
||||
}
|
||||
} else {
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
classPriors_[c] = classCounts_[c] / totalCount;
|
||||
}
|
||||
}
|
||||
// (2) p(x_i=si | c) => classFeatureProbs_
|
||||
int idx, sf;
|
||||
double denom, countVal, p;
|
||||
for (int feature = 0; feature < nFeatures_; ++feature) {
|
||||
sf = states_[feature];
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
denom = classCounts_[c] * sf;
|
||||
if (denom <= 0.0) {
|
||||
// fallback => uniform
|
||||
for (int sf_value = 0; sf_value < sf; ++sf_value) {
|
||||
idx = (featureClassOffset_[feature] + sf_value) * statesClass_ + c;
|
||||
classFeatureProbs_[idx] = 1.0 / sf;
|
||||
}
|
||||
} else {
|
||||
for (int sf_value = 0; sf_value < sf; ++sf_value) {
|
||||
idx = (featureClassOffset_[feature] + sf_value) * statesClass_ + c;
|
||||
countVal = classFeatureCounts_[idx];
|
||||
p = ((countVal + alpha_ / (statesClass_ * states_[feature])) / (totalCount + alpha_));
|
||||
classFeatureProbs_[idx] = p;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// getCountFromTable(int classVal, int pIndex, int childIndex)
|
||||
// (3) p(x_c=sc | c, x_p=sp) => data_(parent,sp,child,sc,c)
|
||||
// (3) p(x_p=sp | c, x_c=sc) => dataOpp_(child,sc,parent,sp,c)
|
||||
// C(x_c, x_p, c) + alpha_/Card(xp)
|
||||
// P(x_p | x_c, c) = -----------------------------------
|
||||
// C(x_c, c) + alpha_
|
||||
double pcc_count, pc_count, cc_count;
|
||||
double conditionalProb, oppositeCondProb;
|
||||
int part1, part2, p1, part2_class, p1_class;
|
||||
for (int parent = 1; parent < nFeatures_; ++parent) {
|
||||
for (int sp = 0; sp < states_[parent]; ++sp) {
|
||||
p1 = featureClassOffset_[parent] + sp;
|
||||
part1 = pairOffset_[p1];
|
||||
p1_class = p1 * statesClass_;
|
||||
for (int child = 0; child < parent; ++child) {
|
||||
for (int sc = 0; sc < states_[child]; ++sc) {
|
||||
part2 = featureClassOffset_[child] + sc;
|
||||
part2_class = part2 * statesClass_;
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
idx = (part1 + part2) * statesClass_ + c;
|
||||
// Parent, Child, Class Count
|
||||
pcc_count = data_[idx];
|
||||
// Parent, Class count
|
||||
pc_count = classFeatureCounts_[p1_class + c];
|
||||
// Child, Class count
|
||||
cc_count = classFeatureCounts_[part2_class + c];
|
||||
// p(x_c=sc | c, x_p=sp)
|
||||
conditionalProb = (pcc_count + alpha_ / states_[parent]) / (cc_count + alpha_);
|
||||
data_[idx] = conditionalProb;
|
||||
// p(x_p=sp | c, x_c=sc)
|
||||
oppositeCondProb = (pcc_count + alpha_ / states_[child]) / (pc_count + alpha_);
|
||||
dataOpp_[idx] = oppositeCondProb;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
matrixState_ = MatrixState::PROBS;
|
||||
}
|
||||
// -------------------------------------------------------
|
||||
// predict_proba_spode
|
||||
// -------------------------------------------------------
|
||||
//
|
||||
// Single-superparent approach:
|
||||
// P(c | x) ∝ p(c) * p(x_sp| c) * ∏_{i≠sp} p(x_i | c, x_sp)
|
||||
//
|
||||
// 'instance' should have size == nFeatures_ (no class).
|
||||
// sp in [0..nFeatures_).
|
||||
// We multiply p(c) * p(x_sp| c) * p(x_i| c, x_sp).
|
||||
// Then normalize the distribution.
|
||||
//
|
||||
std::vector<double> predict_proba_spode(const std::vector<int>& instance, int parent)
|
||||
{
|
||||
// accumulates posterior probabilities for each class
|
||||
auto probs = std::vector<double>(statesClass_);
|
||||
auto spodeProbs = std::vector<double>(statesClass_);
|
||||
// Initialize the probabilities with the feature|class probabilities x class priors
|
||||
int localOffset;
|
||||
int sp = instance[parent];
|
||||
localOffset = (featureClassOffset_[parent] + sp) * statesClass_;
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
spodeProbs[c] = classFeatureProbs_[localOffset + c] * classPriors_[c] * initializer_;
|
||||
}
|
||||
int idx, base, sc, parent_offset;
|
||||
sp = instance[parent];
|
||||
parent_offset = pairOffset_[featureClassOffset_[parent] + sp];
|
||||
for (int child = 0; child < nFeatures_; ++child) {
|
||||
if (child == parent) {
|
||||
continue;
|
||||
}
|
||||
sc = instance[child];
|
||||
base = (parent_offset + featureClassOffset_[child] + sc) * statesClass_;
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
/*
|
||||
* The probability P(xc|xp,c) is stored in dataOpp_, and
|
||||
* the probability P(xp|xc,c) is stored in data_
|
||||
*/
|
||||
idx = base + c;
|
||||
spodeProbs[c] *= child < parent ? dataOpp_[idx] : data_[idx];
|
||||
}
|
||||
}
|
||||
// Normalize the probabilities
|
||||
normalize(spodeProbs);
|
||||
return spodeProbs;
|
||||
}
|
||||
int predict_spode(const std::vector<int>& instance, int parent)
|
||||
{
|
||||
auto probs = predict_proba_spode(instance, parent);
|
||||
return (int)std::distance(probs.begin(), std::max_element(probs.begin(), probs.end()));
|
||||
}
|
||||
// -------------------------------------------------------
|
||||
// predict_proba
|
||||
// -------------------------------------------------------
|
||||
//
|
||||
// P(c | x) ∝ p(c) * ∏_{i} p(x_i | c) * ∏_{i<j} p(x_j | c, x_i) * p(x_i | c, x_j)
|
||||
//
|
||||
// 'instance' should have size == nFeatures_ (no class).
|
||||
// We multiply p(c) * p(x_i| c) * p(x_j| c, x_i) for all i, j.
|
||||
// Then normalize the distribution.
|
||||
//
|
||||
std::vector<double> predict_proba(const std::vector<int>& instance)
|
||||
{
|
||||
// accumulates posterior probabilities for each class
|
||||
auto probs = std::vector<double>(statesClass_);
|
||||
auto spodeProbs = std::vector<std::vector<double>>(nFeatures_, std::vector<double>(statesClass_));
|
||||
// Initialize the probabilities with the feature|class probabilities
|
||||
int localOffset;
|
||||
for (int feature = 0; feature < nFeatures_; ++feature) {
|
||||
// if feature is not in the active_parents, skip it
|
||||
if (std::find(active_parents.begin(), active_parents.end(), feature) == active_parents.end()) {
|
||||
continue;
|
||||
}
|
||||
localOffset = (featureClassOffset_[feature] + instance[feature]) * statesClass_;
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
spodeProbs[feature][c] = classFeatureProbs_[localOffset + c] * classPriors_[c];
|
||||
}
|
||||
}
|
||||
int idx, base, sp, sc, parent_offset;
|
||||
for (int parent = 1; parent < nFeatures_; ++parent) {
|
||||
// if parent is not in the active_parents, skip it
|
||||
if (std::find(active_parents.begin(), active_parents.end(), parent) == active_parents.end()) {
|
||||
continue;
|
||||
}
|
||||
sp = instance[parent];
|
||||
parent_offset = pairOffset_[featureClassOffset_[parent] + sp];
|
||||
for (int child = 0; child < parent; ++child) {
|
||||
sc = instance[child];
|
||||
base = (parent_offset + featureClassOffset_[child] + sc) * statesClass_;
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
/*
|
||||
* The probability P(xc|xp,c) is stored in dataOpp_, and
|
||||
* the probability P(xp|xc,c) is stored in data_
|
||||
*/
|
||||
idx = base + c;
|
||||
spodeProbs[child][c] *= data_[idx];
|
||||
spodeProbs[parent][c] *= dataOpp_[idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
/* add all the probabilities for each class */
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
for (int i = 0; i < nFeatures_; ++i) {
|
||||
probs[c] += spodeProbs[i][c] * significance_models_[i];
|
||||
}
|
||||
}
|
||||
// Normalize the probabilities
|
||||
normalize(probs);
|
||||
return probs;
|
||||
}
|
||||
void normalize(std::vector<double>& probs) const
|
||||
{
|
||||
double sum = std::accumulate(probs.begin(), probs.end(), 0.0);
|
||||
if (std::isnan(sum)) {
|
||||
throw std::runtime_error("Can't normalize array. Sum is NaN.");
|
||||
}
|
||||
if (sum == 0) {
|
||||
return;
|
||||
}
|
||||
for (int i = 0; i < (int)probs.size(); i++) {
|
||||
probs[i] /= sum;
|
||||
}
|
||||
}
|
||||
// Returns current mode: INIT, COUNTS or PROBS
|
||||
MatrixState state() const
|
||||
{
|
||||
return matrixState_;
|
||||
}
|
||||
int statesClass() const
|
||||
{
|
||||
return statesClass_;
|
||||
}
|
||||
int nFeatures() const
|
||||
{
|
||||
return nFeatures_;
|
||||
}
|
||||
int getNumberOfStates() const
|
||||
{
|
||||
return std::accumulate(states_.begin(), states_.end(), 0) * nFeatures_;
|
||||
}
|
||||
int getNumberOfEdges() const
|
||||
{
|
||||
return nFeatures_ * (2 * nFeatures_ - 1);
|
||||
}
|
||||
int getNumberOfNodes() const
|
||||
{
|
||||
return (nFeatures_ + 1) * nFeatures_;
|
||||
}
|
||||
void add_active_parent(int active_parent)
|
||||
{
|
||||
active_parents.push_back(active_parent);
|
||||
}
|
||||
void remove_last_parent()
|
||||
{
|
||||
active_parents.pop_back();
|
||||
}
|
||||
|
||||
private:
|
||||
// -----------
|
||||
// MEMBER DATA
|
||||
// -----------
|
||||
std::vector<int> states_; // [states_feat0, ..., states_feat(n-1), statesClass_]
|
||||
int nFeatures_;
|
||||
int statesClass_;
|
||||
|
||||
// data_ means p(child=sj | c, superparent= si) after normalization.
|
||||
// But in COUNTS mode, it accumulates raw counts.
|
||||
std::vector<int> pairOffset_;
|
||||
// data_ stores p(child=sj | c, superparent=si) for each pair (i<j).
|
||||
std::vector<double> data_;
|
||||
// dataOpp_ stores p(superparent=si | c, child=sj) for each pair (i<j).
|
||||
std::vector<double> dataOpp_;
|
||||
|
||||
// classCounts_[c]
|
||||
std::vector<double> classCounts_;
|
||||
std::vector<double> classPriors_; // => p(c)
|
||||
|
||||
// For p(x_i=si| c), we store counts in classFeatureCounts_ => offset by featureClassOffset_[i]
|
||||
std::vector<int> featureClassOffset_;
|
||||
std::vector<double> classFeatureCounts_;
|
||||
std::vector<double> classFeatureProbs_; // => p(x_i=si | c) after normalization
|
||||
|
||||
MatrixState matrixState_;
|
||||
|
||||
double alpha_ = 1.0;
|
||||
double initializer_ = std::numeric_limits<double>::max();
|
||||
std::vector<int> active_parents;
|
||||
};
|
||||
}
|
||||
#endif // XAODE2_H
|
Reference in New Issue
Block a user