Add conversion methods
This commit is contained in:
@@ -61,6 +61,7 @@ namespace platform {
|
|||||||
std::cout << "* Time to build the model: " << timert.getDuration() << " seconds" << std::endl;
|
std::cout << "* Time to build the model: " << timert.getDuration() << " seconds" << std::endl;
|
||||||
// exit(1);
|
// exit(1);
|
||||||
}
|
}
|
||||||
|
fitted = true;
|
||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
std::vector<std::vector<double>> XA1DE::predict_proba(std::vector<std::vector<int>>& test_data)
|
std::vector<std::vector<double>> XA1DE::predict_proba(std::vector<std::vector<int>>& test_data)
|
||||||
@@ -115,6 +116,9 @@ namespace platform {
|
|||||||
}
|
}
|
||||||
std::vector<int> XA1DE::predict(std::vector<std::vector<int>>& test_data)
|
std::vector<int> XA1DE::predict(std::vector<std::vector<int>>& test_data)
|
||||||
{
|
{
|
||||||
|
if (!fitted) {
|
||||||
|
throw std::logic_error(CLASSIFIER_NOT_FITTED);
|
||||||
|
}
|
||||||
auto probabilities = predict_proba(test_data);
|
auto probabilities = predict_proba(test_data);
|
||||||
std::vector<int> predictions(probabilities.size(), 0);
|
std::vector<int> predictions(probabilities.size(), 0);
|
||||||
|
|
||||||
@@ -147,4 +151,47 @@ namespace platform {
|
|||||||
}
|
}
|
||||||
return static_cast<float>(correct) / predictions.size();
|
return static_cast<float>(correct) / predictions.size();
|
||||||
}
|
}
|
||||||
|
std::vector<std::vector<int>> to_matrix(const torch::Tensor& X)
|
||||||
|
{
|
||||||
|
// Ensure tensor is contiguous in memory
|
||||||
|
auto X_contig = X.contiguous();
|
||||||
|
|
||||||
|
// Access tensor data pointer directly
|
||||||
|
auto data_ptr = X_contig.data_ptr<int>();
|
||||||
|
|
||||||
|
// IF you are using int64_t as the data type, use the following line
|
||||||
|
//auto data_ptr = X_contig.data_ptr<int64_t>();
|
||||||
|
//std::vector<std::vector<int64_t>> data(X.size(0), std::vector<int64_t>(X.size(1)));
|
||||||
|
|
||||||
|
// Prepare output container
|
||||||
|
std::vector<std::vector<int>> data(X.size(0), std::vector<int>(X.size(1)));
|
||||||
|
|
||||||
|
// Fill the 2D vector in a single loop using pointer arithmetic
|
||||||
|
int rows = X.size(0);
|
||||||
|
int cols = X.size(1);
|
||||||
|
for (int i = 0; i < rows; ++i) {
|
||||||
|
std::copy(data_ptr + i * cols, data_ptr + (i + 1) * cols, data[i].begin());
|
||||||
|
}
|
||||||
|
return data;
|
||||||
|
}
|
||||||
|
std::vector<int> to_vector(const torch::Tensor& y)
|
||||||
|
{
|
||||||
|
// Ensure the tensor is contiguous in memory
|
||||||
|
auto y_contig = y.contiguous();
|
||||||
|
|
||||||
|
// Access data pointer
|
||||||
|
auto data_ptr = y_contig.data_ptr<int>();
|
||||||
|
|
||||||
|
// Prepare output container
|
||||||
|
std::vector<int> data(y.size(0));
|
||||||
|
|
||||||
|
// Copy data efficiently
|
||||||
|
std::copy(data_ptr, data_ptr + y.size(0), data.begin());
|
||||||
|
|
||||||
|
return data;
|
||||||
|
}
|
||||||
|
XA1DE& XA1DE::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
|
||||||
|
{
|
||||||
|
return fit(to_matrix(X), to_vector(y), features, className, states, smoothing);
|
||||||
|
}
|
||||||
}
|
}
|
@@ -21,16 +21,18 @@ namespace platform {
|
|||||||
public:
|
public:
|
||||||
XA1DE();
|
XA1DE();
|
||||||
virtual ~XA1DE() = default;
|
virtual ~XA1DE() = default;
|
||||||
|
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
||||||
|
|
||||||
std::vector<std::vector<double>> predict_proba_threads(const std::vector<std::vector<int>>& test_data);
|
std::vector<std::vector<double>> predict_proba_threads(const std::vector<std::vector<int>>& test_data);
|
||||||
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
|
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
|
||||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
||||||
|
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
||||||
XA1DE& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
|
XA1DE& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
|
||||||
|
|
||||||
XA1DE& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override { return *this; };
|
XA1DE& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override { return *this; };
|
||||||
XA1DE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override { return *this; };
|
XA1DE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override { return *this; };
|
||||||
XA1DE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override { return *this; };
|
XA1DE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override { return *this; };
|
||||||
torch::Tensor predict(torch::Tensor& X) override { return torch::zeros(0); };
|
torch::Tensor predict(torch::Tensor& X) override { return torch::zeros(0); };
|
||||||
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
|
||||||
torch::Tensor predict_proba(torch::Tensor& X) override { return torch::zeros(0); };
|
torch::Tensor predict_proba(torch::Tensor& X) override { return torch::zeros(0); };
|
||||||
|
|
||||||
int getNumberOfNodes() const override { return 0; };
|
int getNumberOfNodes() const override { return 0; };
|
||||||
@@ -61,6 +63,8 @@ namespace platform {
|
|||||||
w = w * num_instances / sum;
|
w = w * num_instances / sum;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
std::vector<int> to_vector(const torch::Tensor& y);
|
||||||
|
std::vector<std::vector<int>> to_matrix(const torch::Tensor& X);
|
||||||
Xaode aode_;
|
Xaode aode_;
|
||||||
std::vector<double> weights_;
|
std::vector<double> weights_;
|
||||||
CountingSemaphore& semaphore_;
|
CountingSemaphore& semaphore_;
|
||||||
@@ -69,6 +73,7 @@ namespace platform {
|
|||||||
std::vector<std::string> notes;
|
std::vector<std::string> notes;
|
||||||
bool use_threads = false;
|
bool use_threads = false;
|
||||||
std::string version = "0.9.7";
|
std::string version = "0.9.7";
|
||||||
|
bool fitted = false;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif // XA1DE_H
|
#endif // XA1DE_H
|
Reference in New Issue
Block a user