Add conversion methods

This commit is contained in:
2025-02-18 12:07:56 +01:00
parent 14dd8ebb66
commit ac89cefab3
2 changed files with 53 additions and 1 deletions

View File

@@ -61,6 +61,7 @@ namespace platform {
std::cout << "* Time to build the model: " << timert.getDuration() << " seconds" << std::endl;
// exit(1);
}
fitted = true;
return *this;
}
std::vector<std::vector<double>> XA1DE::predict_proba(std::vector<std::vector<int>>& test_data)
@@ -115,6 +116,9 @@ namespace platform {
}
std::vector<int> XA1DE::predict(std::vector<std::vector<int>>& test_data)
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
auto probabilities = predict_proba(test_data);
std::vector<int> predictions(probabilities.size(), 0);
@@ -147,4 +151,47 @@ namespace platform {
}
return static_cast<float>(correct) / predictions.size();
}
std::vector<std::vector<int>> to_matrix(const torch::Tensor& X)
{
// Ensure tensor is contiguous in memory
auto X_contig = X.contiguous();
// Access tensor data pointer directly
auto data_ptr = X_contig.data_ptr<int>();
// IF you are using int64_t as the data type, use the following line
//auto data_ptr = X_contig.data_ptr<int64_t>();
//std::vector<std::vector<int64_t>> data(X.size(0), std::vector<int64_t>(X.size(1)));
// Prepare output container
std::vector<std::vector<int>> data(X.size(0), std::vector<int>(X.size(1)));
// Fill the 2D vector in a single loop using pointer arithmetic
int rows = X.size(0);
int cols = X.size(1);
for (int i = 0; i < rows; ++i) {
std::copy(data_ptr + i * cols, data_ptr + (i + 1) * cols, data[i].begin());
}
return data;
}
std::vector<int> to_vector(const torch::Tensor& y)
{
// Ensure the tensor is contiguous in memory
auto y_contig = y.contiguous();
// Access data pointer
auto data_ptr = y_contig.data_ptr<int>();
// Prepare output container
std::vector<int> data(y.size(0));
// Copy data efficiently
std::copy(data_ptr, data_ptr + y.size(0), data.begin());
return data;
}
XA1DE& XA1DE::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
return fit(to_matrix(X), to_vector(y), features, className, states, smoothing);
}
}