Create XBAODE classifier
This commit is contained in:
@@ -26,6 +26,7 @@ add_executable(
|
|||||||
reports/ReportExcel.cpp reports/ReportBase.cpp reports/ExcelFile.cpp
|
reports/ReportExcel.cpp reports/ReportBase.cpp reports/ExcelFile.cpp
|
||||||
results/Result.cpp
|
results/Result.cpp
|
||||||
experimental_clfs/XA1DE.cpp
|
experimental_clfs/XA1DE.cpp
|
||||||
|
experimental_clfs/XBAODE.cpp
|
||||||
)
|
)
|
||||||
target_link_libraries(b_best Boost::boost "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy "${XLSXWRITER_LIB}")
|
target_link_libraries(b_best Boost::boost "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy "${XLSXWRITER_LIB}")
|
||||||
|
|
||||||
@@ -38,6 +39,7 @@ add_executable(b_grid commands/b_grid.cpp ${grid_sources}
|
|||||||
reports/ReportConsole.cpp reports/ReportBase.cpp
|
reports/ReportConsole.cpp reports/ReportBase.cpp
|
||||||
results/Result.cpp
|
results/Result.cpp
|
||||||
experimental_clfs/XA1DE.cpp
|
experimental_clfs/XA1DE.cpp
|
||||||
|
experimental_clfs/XBAODE.cpp
|
||||||
)
|
)
|
||||||
target_link_libraries(b_grid ${MPI_CXX_LIBRARIES} "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy)
|
target_link_libraries(b_grid ${MPI_CXX_LIBRARIES} "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy)
|
||||||
|
|
||||||
@@ -48,6 +50,7 @@ add_executable(b_list commands/b_list.cpp
|
|||||||
reports/ReportExcel.cpp reports/ExcelFile.cpp reports/ReportBase.cpp reports/DatasetsExcel.cpp reports/DatasetsConsole.cpp reports/ReportsPaged.cpp
|
reports/ReportExcel.cpp reports/ExcelFile.cpp reports/ReportBase.cpp reports/DatasetsExcel.cpp reports/DatasetsConsole.cpp reports/ReportsPaged.cpp
|
||||||
results/Result.cpp results/ResultsDatasetExcel.cpp results/ResultsDataset.cpp results/ResultsDatasetConsole.cpp
|
results/Result.cpp results/ResultsDatasetExcel.cpp results/ResultsDataset.cpp results/ResultsDatasetConsole.cpp
|
||||||
experimental_clfs/XA1DE.cpp
|
experimental_clfs/XA1DE.cpp
|
||||||
|
experimental_clfs/XBAODE.cpp
|
||||||
)
|
)
|
||||||
target_link_libraries(b_list "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy "${XLSXWRITER_LIB}")
|
target_link_libraries(b_list "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy "${XLSXWRITER_LIB}")
|
||||||
|
|
||||||
@@ -59,6 +62,7 @@ add_executable(b_main commands/b_main.cpp ${main_sources}
|
|||||||
reports/ReportConsole.cpp reports/ReportBase.cpp
|
reports/ReportConsole.cpp reports/ReportBase.cpp
|
||||||
results/Result.cpp
|
results/Result.cpp
|
||||||
experimental_clfs/XA1DE.cpp
|
experimental_clfs/XA1DE.cpp
|
||||||
|
experimental_clfs/XBAODE.cpp
|
||||||
)
|
)
|
||||||
target_link_libraries(b_main "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy)
|
target_link_libraries(b_main "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy)
|
||||||
|
|
||||||
|
@@ -22,8 +22,6 @@ namespace platform {
|
|||||||
public:
|
public:
|
||||||
XA1DE();
|
XA1DE();
|
||||||
virtual ~XA1DE() = default;
|
virtual ~XA1DE() = default;
|
||||||
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
|
||||||
|
|
||||||
XA1DE& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
|
XA1DE& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
|
||||||
XA1DE& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
|
XA1DE& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
|
||||||
XA1DE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
|
XA1DE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
|
||||||
@@ -49,10 +47,12 @@ namespace platform {
|
|||||||
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
|
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
|
||||||
void setDebug(bool debug) { this->debug = debug; }
|
void setDebug(bool debug) { this->debug = debug; }
|
||||||
std::vector<std::string> graph(const std::string& title = "") const override { return {}; }
|
std::vector<std::string> graph(const std::string& title = "") const override { return {}; }
|
||||||
|
void set_active_parents(std::vector<int> active_parents) { aode_.set_active_parents(active_parents); }
|
||||||
protected:
|
protected:
|
||||||
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override {};
|
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override {};
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
||||||
inline void normalize_weights(int num_instances)
|
inline void normalize_weights(int num_instances)
|
||||||
{
|
{
|
||||||
double sum = std::accumulate(weights_.begin(), weights_.end(), 0.0);
|
double sum = std::accumulate(weights_.begin(), weights_.end(), 0.0);
|
||||||
@@ -74,7 +74,7 @@ namespace platform {
|
|||||||
bayesnet::status_t status = bayesnet::NORMAL;
|
bayesnet::status_t status = bayesnet::NORMAL;
|
||||||
std::vector<std::string> notes;
|
std::vector<std::string> notes;
|
||||||
bool use_threads = true;
|
bool use_threads = true;
|
||||||
std::string version = "0.9.7";
|
std::string version = "1.0.0";
|
||||||
bool fitted = false;
|
bool fitted = false;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
90
src/experimental_clfs/XBAODE.cpp
Normal file
90
src/experimental_clfs/XBAODE.cpp
Normal file
@@ -0,0 +1,90 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include "XBAODE.h"
|
||||||
|
|
||||||
|
namespace platform {
|
||||||
|
XBAODE::XBAODE() : semaphore_{ CountingSemaphore::getInstance() }
|
||||||
|
{
|
||||||
|
}
|
||||||
|
XBAODE& XBAODE::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
|
||||||
|
{
|
||||||
|
aode_.fit(X, y, features, className, states, smoothing);
|
||||||
|
fitted = true;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
std::vector<std::vector<double>> XBAODE::predict_proba(std::vector<std::vector<int>>& test_data)
|
||||||
|
{
|
||||||
|
return aode_.predict_proba_threads(test_data);
|
||||||
|
}
|
||||||
|
std::vector<int> XBAODE::predict(std::vector<std::vector<int>>& test_data)
|
||||||
|
{
|
||||||
|
if (!fitted) {
|
||||||
|
throw std::logic_error(CLASSIFIER_NOT_FITTED);
|
||||||
|
}
|
||||||
|
return aode_.predict(test_data);
|
||||||
|
}
|
||||||
|
float XBAODE::score(std::vector<std::vector<int>>& test_data, std::vector<int>& labels)
|
||||||
|
{
|
||||||
|
return aode_.score(test_data, labels);
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// statistics
|
||||||
|
//
|
||||||
|
int XBAODE::getNumberOfNodes() const
|
||||||
|
{
|
||||||
|
return aode_.getNumberOfNodes();
|
||||||
|
}
|
||||||
|
int XBAODE::getNumberOfEdges() const
|
||||||
|
{
|
||||||
|
return aode_.getNumberOfEdges();
|
||||||
|
}
|
||||||
|
int XBAODE::getNumberOfStates() const
|
||||||
|
{
|
||||||
|
return aode_.getNumberOfStates();
|
||||||
|
}
|
||||||
|
int XBAODE::getClassNumStates() const
|
||||||
|
{
|
||||||
|
return aode_.getClassNumStates();
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// Fit
|
||||||
|
//
|
||||||
|
// fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
|
||||||
|
XBAODE& XBAODE::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
|
||||||
|
{
|
||||||
|
aode_.fit(X, y, features, className, states, smoothing);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
XBAODE& XBAODE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
|
||||||
|
{
|
||||||
|
aode_.fit(dataset, features, className, states, smoothing);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
XBAODE& XBAODE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing)
|
||||||
|
{
|
||||||
|
aode_.fit(dataset, features, className, states, weights, smoothing);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
//
|
||||||
|
// Predict
|
||||||
|
//
|
||||||
|
torch::Tensor XBAODE::predict(torch::Tensor& X)
|
||||||
|
{
|
||||||
|
return aode_.predict(X);
|
||||||
|
}
|
||||||
|
torch::Tensor XBAODE::predict_proba(torch::Tensor& X)
|
||||||
|
{
|
||||||
|
return aode_.predict_proba(X);
|
||||||
|
}
|
||||||
|
float XBAODE::score(torch::Tensor& X, torch::Tensor& y)
|
||||||
|
{
|
||||||
|
return aode_.score(X, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
67
src/experimental_clfs/XBAODE.h
Normal file
67
src/experimental_clfs/XBAODE.h
Normal file
@@ -0,0 +1,67 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#ifndef XBAODE_H
|
||||||
|
#define XBAODE_H
|
||||||
|
#include <iostream>
|
||||||
|
#include <vector>
|
||||||
|
#include <cmath>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <limits>
|
||||||
|
#include "common/Timer.hpp"
|
||||||
|
#include "CountingSemaphore.hpp"
|
||||||
|
#include "bayesnet/ensembles/Boost.h"
|
||||||
|
#include "XA1DE.h"
|
||||||
|
|
||||||
|
namespace platform {
|
||||||
|
|
||||||
|
class XBAODE : public bayesnet::Boost {
|
||||||
|
public:
|
||||||
|
XBAODE();
|
||||||
|
virtual ~XBAODE() = default;
|
||||||
|
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
||||||
|
|
||||||
|
XBAODE& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
|
||||||
|
XBAODE& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
|
||||||
|
XBAODE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
|
||||||
|
XBAODE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
|
||||||
|
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
||||||
|
torch::Tensor predict(torch::Tensor& X) override;
|
||||||
|
torch::Tensor predict_proba(torch::Tensor& X) override;
|
||||||
|
std::vector<std::vector<double>> predict_proba_threads(const std::vector<std::vector<int>>& test_data);
|
||||||
|
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
|
||||||
|
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
||||||
|
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||||
|
int getNumberOfNodes() const override;
|
||||||
|
int getNumberOfEdges() const override;
|
||||||
|
int getNumberOfStates() const override;
|
||||||
|
int getClassNumStates() const override;
|
||||||
|
bayesnet::status_t getStatus() const override { return status; }
|
||||||
|
std::string getVersion() override { return version; };
|
||||||
|
std::vector<std::string> show() const override { return {}; }
|
||||||
|
std::vector<std::string> topological_order() override { return {}; }
|
||||||
|
std::vector<std::string> getNotes() const override { return notes; }
|
||||||
|
std::string dump_cpt() const override { return ""; }
|
||||||
|
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
|
||||||
|
void setDebug(bool debug) { this->debug = debug; }
|
||||||
|
std::vector<std::string> graph(const std::string& title = "") const override { return {}; }
|
||||||
|
void set_active_parents(std::vector<int> active_parents) { aode_.set_active_parents(active_parents); }
|
||||||
|
protected:
|
||||||
|
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override {};
|
||||||
|
|
||||||
|
private:
|
||||||
|
XA1DE aode_;
|
||||||
|
std::vector<double> weights_;
|
||||||
|
CountingSemaphore& semaphore_;
|
||||||
|
bool debug = false;
|
||||||
|
bayesnet::status_t status = bayesnet::NORMAL;
|
||||||
|
std::vector<std::string> notes;
|
||||||
|
bool use_threads = true;
|
||||||
|
std::string version = "0.9.7";
|
||||||
|
bool fitted = false;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif // XBAODE_H
|
@@ -552,6 +552,10 @@ namespace platform {
|
|||||||
{
|
{
|
||||||
return (nFeatures_ + 1) * nFeatures_;
|
return (nFeatures_ + 1) * nFeatures_;
|
||||||
}
|
}
|
||||||
|
void set_active_parents(std::vector<int> active_parents)
|
||||||
|
{
|
||||||
|
this->active_parents = active_parents;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
private:
|
private:
|
||||||
@@ -583,6 +587,7 @@ namespace platform {
|
|||||||
MatrixState matrixState_;
|
MatrixState matrixState_;
|
||||||
|
|
||||||
double SMOOTHING = 1.0;
|
double SMOOTHING = 1.0;
|
||||||
|
std::vector<int> active_parents;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif // XAODE_H
|
#endif // XAODE_H
|
@@ -21,6 +21,7 @@
|
|||||||
#include <pyclassifiers/XGBoost.h>
|
#include <pyclassifiers/XGBoost.h>
|
||||||
#include <pyclassifiers/RandomForest.h>
|
#include <pyclassifiers/RandomForest.h>
|
||||||
#include "../experimental_clfs/XA1DE.h"
|
#include "../experimental_clfs/XA1DE.h"
|
||||||
|
#include "../experimental_clfs/XBAODE.h"
|
||||||
namespace platform {
|
namespace platform {
|
||||||
class Models {
|
class Models {
|
||||||
public:
|
public:
|
||||||
|
@@ -1,41 +1,43 @@
|
|||||||
#ifndef MODELREGISTER_H
|
#ifndef MODELREGISTER_H
|
||||||
#define MODELREGISTER_H
|
#define MODELREGISTER_H
|
||||||
|
namespace platform {
|
||||||
static platform::Registrar registrarT("TAN",
|
static Registrar registrarT("TAN",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
|
||||||
static platform::Registrar registrarTLD("TANLd",
|
static Registrar registrarTLD("TANLd",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANLd();});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANLd();});
|
||||||
static platform::Registrar registrarS("SPODE",
|
static Registrar registrarS("SPODE",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
|
||||||
static platform::Registrar registrarSn("SPnDE",
|
static Registrar registrarSn("SPnDE",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPnDE({ 0, 1 });});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPnDE({ 0, 1 });});
|
||||||
static platform::Registrar registrarSLD("SPODELd",
|
static Registrar registrarSLD("SPODELd",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODELd(2);});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODELd(2);});
|
||||||
static platform::Registrar registrarK("KDB",
|
static Registrar registrarK("KDB",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
|
||||||
static platform::Registrar registrarKLD("KDBLd",
|
static Registrar registrarKLD("KDBLd",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDBLd(2);});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDBLd(2);});
|
||||||
static platform::Registrar registrarA("AODE",
|
static Registrar registrarA("AODE",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
|
||||||
static platform::Registrar registrarA2("A2DE",
|
static Registrar registrarA2("A2DE",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::A2DE();});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::A2DE();});
|
||||||
static platform::Registrar registrarALD("AODELd",
|
static Registrar registrarALD("AODELd",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
|
||||||
static platform::Registrar registrarBA("BoostAODE",
|
static Registrar registrarBA("BoostAODE",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostAODE();});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostAODE();});
|
||||||
static platform::Registrar registrarBA2("BoostA2DE",
|
static Registrar registrarBA2("BoostA2DE",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostA2DE();});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostA2DE();});
|
||||||
static platform::Registrar registrarSt("STree",
|
static Registrar registrarSt("STree",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::STree();});
|
[](void) -> bayesnet::BaseClassifier* { return new pywrap::STree();});
|
||||||
static platform::Registrar registrarOdte("Odte",
|
static Registrar registrarOdte("Odte",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::ODTE();});
|
[](void) -> bayesnet::BaseClassifier* { return new pywrap::ODTE();});
|
||||||
static platform::Registrar registrarSvc("SVC",
|
static Registrar registrarSvc("SVC",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::SVC();});
|
[](void) -> bayesnet::BaseClassifier* { return new pywrap::SVC();});
|
||||||
static platform::Registrar registrarRaF("RandomForest",
|
static Registrar registrarRaF("RandomForest",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::RandomForest();});
|
[](void) -> bayesnet::BaseClassifier* { return new pywrap::RandomForest();});
|
||||||
static platform::Registrar registrarXGB("XGBoost",
|
static Registrar registrarXGB("XGBoost",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::XGBoost();});
|
[](void) -> bayesnet::BaseClassifier* { return new pywrap::XGBoost();});
|
||||||
static platform::Registrar registrarXA1DE("XA1DE",
|
static Registrar registrarXA1DE("XA1DE",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new platform::XA1DE();});
|
[](void) -> bayesnet::BaseClassifier* { return new XA1DE();});
|
||||||
|
static Registrar registrarXBAODE("XBAODE",
|
||||||
|
[](void) -> bayesnet::BaseClassifier* { return new XBAODE();});
|
||||||
|
}
|
||||||
#endif
|
#endif
|
Reference in New Issue
Block a user