Create XBAODE classifier

This commit is contained in:
2025-02-23 19:44:13 +01:00
parent 1b26de1e38
commit 5daf7cbd69
7 changed files with 210 additions and 41 deletions

View File

@@ -0,0 +1,67 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef XBAODE_H
#define XBAODE_H
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <limits>
#include "common/Timer.hpp"
#include "CountingSemaphore.hpp"
#include "bayesnet/ensembles/Boost.h"
#include "XA1DE.h"
namespace platform {
class XBAODE : public bayesnet::Boost {
public:
XBAODE();
virtual ~XBAODE() = default;
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
XBAODE& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
XBAODE& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
XBAODE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
XBAODE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
torch::Tensor predict(torch::Tensor& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override;
std::vector<std::vector<double>> predict_proba_threads(const std::vector<std::vector<int>>& test_data);
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
float score(torch::Tensor& X, torch::Tensor& y) override;
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
int getClassNumStates() const override;
bayesnet::status_t getStatus() const override { return status; }
std::string getVersion() override { return version; };
std::vector<std::string> show() const override { return {}; }
std::vector<std::string> topological_order() override { return {}; }
std::vector<std::string> getNotes() const override { return notes; }
std::string dump_cpt() const override { return ""; }
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
void setDebug(bool debug) { this->debug = debug; }
std::vector<std::string> graph(const std::string& title = "") const override { return {}; }
void set_active_parents(std::vector<int> active_parents) { aode_.set_active_parents(active_parents); }
protected:
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override {};
private:
XA1DE aode_;
std::vector<double> weights_;
CountingSemaphore& semaphore_;
bool debug = false;
bayesnet::status_t status = bayesnet::NORMAL;
std::vector<std::string> notes;
bool use_threads = true;
std::string version = "0.9.7";
bool fitted = false;
};
}
#endif // XBAODE_H