Create XBAODE classifier

This commit is contained in:
2025-02-23 19:44:13 +01:00
parent 1b26de1e38
commit 5daf7cbd69
7 changed files with 210 additions and 41 deletions

View File

@@ -0,0 +1,90 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "XBAODE.h"
namespace platform {
XBAODE::XBAODE() : semaphore_{ CountingSemaphore::getInstance() }
{
}
XBAODE& XBAODE::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
aode_.fit(X, y, features, className, states, smoothing);
fitted = true;
return *this;
}
std::vector<std::vector<double>> XBAODE::predict_proba(std::vector<std::vector<int>>& test_data)
{
return aode_.predict_proba_threads(test_data);
}
std::vector<int> XBAODE::predict(std::vector<std::vector<int>>& test_data)
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
return aode_.predict(test_data);
}
float XBAODE::score(std::vector<std::vector<int>>& test_data, std::vector<int>& labels)
{
return aode_.score(test_data, labels);
}
//
// statistics
//
int XBAODE::getNumberOfNodes() const
{
return aode_.getNumberOfNodes();
}
int XBAODE::getNumberOfEdges() const
{
return aode_.getNumberOfEdges();
}
int XBAODE::getNumberOfStates() const
{
return aode_.getNumberOfStates();
}
int XBAODE::getClassNumStates() const
{
return aode_.getClassNumStates();
}
//
// Fit
//
// fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
XBAODE& XBAODE::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
aode_.fit(X, y, features, className, states, smoothing);
return *this;
}
XBAODE& XBAODE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
aode_.fit(dataset, features, className, states, smoothing);
return *this;
}
XBAODE& XBAODE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing)
{
aode_.fit(dataset, features, className, states, weights, smoothing);
return *this;
}
//
// Predict
//
torch::Tensor XBAODE::predict(torch::Tensor& X)
{
return aode_.predict(X);
}
torch::Tensor XBAODE::predict_proba(torch::Tensor& X)
{
return aode_.predict_proba(X);
}
float XBAODE::score(torch::Tensor& X, torch::Tensor& y)
{
return aode_.score(X, y);
}
}