Create XBAODE classifier
This commit is contained in:
90
src/experimental_clfs/XBAODE.cpp
Normal file
90
src/experimental_clfs/XBAODE.cpp
Normal file
@@ -0,0 +1,90 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "XBAODE.h"
|
||||
|
||||
namespace platform {
|
||||
XBAODE::XBAODE() : semaphore_{ CountingSemaphore::getInstance() }
|
||||
{
|
||||
}
|
||||
XBAODE& XBAODE::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
|
||||
{
|
||||
aode_.fit(X, y, features, className, states, smoothing);
|
||||
fitted = true;
|
||||
return *this;
|
||||
}
|
||||
std::vector<std::vector<double>> XBAODE::predict_proba(std::vector<std::vector<int>>& test_data)
|
||||
{
|
||||
return aode_.predict_proba_threads(test_data);
|
||||
}
|
||||
std::vector<int> XBAODE::predict(std::vector<std::vector<int>>& test_data)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::logic_error(CLASSIFIER_NOT_FITTED);
|
||||
}
|
||||
return aode_.predict(test_data);
|
||||
}
|
||||
float XBAODE::score(std::vector<std::vector<int>>& test_data, std::vector<int>& labels)
|
||||
{
|
||||
return aode_.score(test_data, labels);
|
||||
}
|
||||
|
||||
//
|
||||
// statistics
|
||||
//
|
||||
int XBAODE::getNumberOfNodes() const
|
||||
{
|
||||
return aode_.getNumberOfNodes();
|
||||
}
|
||||
int XBAODE::getNumberOfEdges() const
|
||||
{
|
||||
return aode_.getNumberOfEdges();
|
||||
}
|
||||
int XBAODE::getNumberOfStates() const
|
||||
{
|
||||
return aode_.getNumberOfStates();
|
||||
}
|
||||
int XBAODE::getClassNumStates() const
|
||||
{
|
||||
return aode_.getClassNumStates();
|
||||
}
|
||||
|
||||
//
|
||||
// Fit
|
||||
//
|
||||
// fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
|
||||
XBAODE& XBAODE::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
|
||||
{
|
||||
aode_.fit(X, y, features, className, states, smoothing);
|
||||
return *this;
|
||||
}
|
||||
XBAODE& XBAODE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
|
||||
{
|
||||
aode_.fit(dataset, features, className, states, smoothing);
|
||||
return *this;
|
||||
}
|
||||
XBAODE& XBAODE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing)
|
||||
{
|
||||
aode_.fit(dataset, features, className, states, weights, smoothing);
|
||||
return *this;
|
||||
}
|
||||
//
|
||||
// Predict
|
||||
//
|
||||
torch::Tensor XBAODE::predict(torch::Tensor& X)
|
||||
{
|
||||
return aode_.predict(X);
|
||||
}
|
||||
torch::Tensor XBAODE::predict_proba(torch::Tensor& X)
|
||||
{
|
||||
return aode_.predict_proba(X);
|
||||
}
|
||||
float XBAODE::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
return aode_.score(X, y);
|
||||
}
|
||||
|
||||
}
|
Reference in New Issue
Block a user