Continue integration into trainModel

This commit is contained in:
2025-02-25 11:03:53 +01:00
parent ce6e192a33
commit 475a819a87
7 changed files with 156 additions and 122 deletions

View File

@@ -98,8 +98,8 @@ test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximu
fname = iris fname = iris
example: ## Build sample example: ## Build sample
@echo ">>> Building Sample..."; @echo ">>> Building Sample...";
@cmake --build build_debug -t sample @cmake --build $(f_release) -t sample
build_debug/sample/PlatformSample --model BoostAODE --dataset $(fname) --discretize --stratified $(f_release)/sample/PlatformSample --model BoostAODE --dataset $(fname) --discretize --stratified
@echo ">>> Done"; @echo ">>> Done";

View File

@@ -0,0 +1,51 @@
#ifndef TENSORUTILS_HPP
#define TENSORUTILS_HPP
#include <torch/torch.h>
#include <vector>
namespace platform {
class TensorUtils {
public:
static std::vector<std::vector<int>> to_matrix(const torch::Tensor& X)
{
// Ensure tensor is contiguous in memory
auto X_contig = X.contiguous();
// Access tensor data pointer directly
auto data_ptr = X_contig.data_ptr<int>();
// IF you are using int64_t as the data type, use the following line
//auto data_ptr = X_contig.data_ptr<int64_t>();
//std::vector<std::vector<int64_t>> data(X.size(0), std::vector<int64_t>(X.size(1)));
// Prepare output container
std::vector<std::vector<int>> data(X.size(0), std::vector<int>(X.size(1)));
// Fill the 2D vector in a single loop using pointer arithmetic
int rows = X.size(0);
int cols = X.size(1);
for (int i = 0; i < rows; ++i) {
std::copy(data_ptr + i * cols, data_ptr + (i + 1) * cols, data[i].begin());
}
return data;
}
template <typename T>
static std::vector<T> to_vector(const torch::Tensor& y)
{
// Ensure the tensor is contiguous in memory
auto y_contig = y.contiguous();
// Access data pointer
auto data_ptr = y_contig.data_ptr<T>();
// Prepare output container
std::vector<T> data(y.size(0));
// Copy data efficiently
std::copy(data_ptr, data_ptr + y.size(0), data.begin());
return data;
}
};
}
#endif // TENSORUTILS_HPP

View File

@@ -5,6 +5,7 @@
// *************************************************************** // ***************************************************************
#include "XA1DE.h" #include "XA1DE.h"
#include "TensorUtils.hpp"
namespace platform { namespace platform {
XA1DE::XA1DE() : semaphore_{ CountingSemaphore::getInstance() } XA1DE::XA1DE() : semaphore_{ CountingSemaphore::getInstance() }
@@ -32,6 +33,7 @@ namespace platform {
instances.push_back(y); instances.push_back(y);
int num_instances = instances[0].size(); int num_instances = instances[0].size();
int num_attributes = instances.size(); int num_attributes = instances.size();
normalize_weights(num_instances); normalize_weights(num_instances);
std::vector<int> statesv; std::vector<int> statesv;
for (int i = 0; i < num_attributes; i++) { for (int i = 0; i < num_attributes; i++) {
@@ -166,47 +168,6 @@ namespace platform {
return static_cast<float>(correct) / predictions.size(); return static_cast<float>(correct) / predictions.size();
} }
std::vector<std::vector<int>> XA1DE::to_matrix(const torch::Tensor& X)
{
// Ensure tensor is contiguous in memory
auto X_contig = X.contiguous();
// Access tensor data pointer directly
auto data_ptr = X_contig.data_ptr<int>();
// IF you are using int64_t as the data type, use the following line
//auto data_ptr = X_contig.data_ptr<int64_t>();
//std::vector<std::vector<int64_t>> data(X.size(0), std::vector<int64_t>(X.size(1)));
// Prepare output container
std::vector<std::vector<int>> data(X.size(0), std::vector<int>(X.size(1)));
// Fill the 2D vector in a single loop using pointer arithmetic
int rows = X.size(0);
int cols = X.size(1);
for (int i = 0; i < rows; ++i) {
std::copy(data_ptr + i * cols, data_ptr + (i + 1) * cols, data[i].begin());
}
return data;
}
template <typename T>
std::vector<T> XA1DE::to_vector(const torch::Tensor& y)
{
// Ensure the tensor is contiguous in memory
auto y_contig = y.contiguous();
// Access data pointer
auto data_ptr = y_contig.data_ptr<T>();
// Prepare output container
std::vector<T> data(y.size(0));
// Copy data efficiently
std::copy(data_ptr, data_ptr + y.size(0), data.begin());
return data;
}
// //
// statistics // statistics
// //
@@ -233,8 +194,8 @@ namespace platform {
// fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) // fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
XA1DE& XA1DE::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) XA1DE& XA1DE::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{ {
auto X_ = to_matrix(X); auto X_ = TensorUtils::to_matrix(X);
auto y_ = to_vector<int>(y); auto y_ = TensorUtils::to_vector<int>(y);
return fit(X_, y_, features, className, states, smoothing); return fit(X_, y_, features, className, states, smoothing);
} }
XA1DE& XA1DE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) XA1DE& XA1DE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
@@ -245,21 +206,55 @@ namespace platform {
} }
XA1DE& XA1DE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) XA1DE& XA1DE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing)
{ {
weights_ = to_vector<double>(weights); weights_ = TensorUtils::to_vector<double>(weights);
return fit(dataset, features, className, states, smoothing); return fit(dataset, features, className, states, smoothing);
} }
// //
// Predict // Predict
// //
std::vector<int> XA1DE::predict_spode(std::vector<std::vector<int>>& test_data, int parent)
{
int test_size = test_data[0].size();
int sample_size = test_data.size();
auto predictions = std::vector<int>(test_size);
int chunk_size = std::min(150, int(test_size / semaphore_.getMaxCount()) + 1);
std::vector<std::thread> threads;
auto worker = [&](const std::vector<std::vector<int>>& samples, int begin, int chunk, int sample_size, std::vector<int>& predictions) {
std::string threadName = "(V)PWorker-" + std::to_string(begin) + "-" + std::to_string(chunk);
#if defined(__linux__)
pthread_setname_np(pthread_self(), threadName.c_str());
#else
pthread_setname_np(threadName.c_str());
#endif
std::vector<int> instance(sample_size);
for (int sample = begin; sample < begin + chunk; ++sample) {
for (int feature = 0; feature < sample_size; ++feature) {
instance[feature] = samples[feature][sample];
}
predictions[sample] = aode_.predict_spode(instance, parent);
}
semaphore_.release();
};
for (int begin = 0; begin < test_size; begin += chunk_size) {
int chunk = std::min(chunk_size, test_size - begin);
semaphore_.acquire();
threads.emplace_back(worker, test_data, begin, chunk, sample_size, std::ref(predictions));
}
for (auto& thread : threads) {
thread.join();
}
return predictions;
}
torch::Tensor XA1DE::predict(torch::Tensor& X) torch::Tensor XA1DE::predict(torch::Tensor& X)
{ {
auto X_ = to_matrix(X); auto X_ = TensorUtils::to_matrix(X);
torch::Tensor y = torch::tensor(predict(X_)); torch::Tensor y = torch::tensor(predict(X_));
return y; return y;
} }
torch::Tensor XA1DE::predict_proba(torch::Tensor& X) torch::Tensor XA1DE::predict_proba(torch::Tensor& X)
{ {
auto X_ = to_matrix(X); auto X_ = TensorUtils::to_matrix(X);
auto probabilities = predict_proba(X_); auto probabilities = predict_proba(X_);
auto n_samples = X.size(1); auto n_samples = X.size(1);
int n_classes = probabilities[0].size(); int n_classes = probabilities[0].size();
@@ -273,8 +268,8 @@ namespace platform {
} }
float XA1DE::score(torch::Tensor& X, torch::Tensor& y) float XA1DE::score(torch::Tensor& X, torch::Tensor& y)
{ {
auto X_ = to_matrix(X); auto X_ = TensorUtils::to_matrix(X);
auto y_ = to_vector<int>(y); auto y_ = TensorUtils::to_vector<int>(y);
return score(X_, y_); return score(X_, y_);
} }

View File

@@ -29,6 +29,7 @@ namespace platform {
std::vector<int> predict(std::vector<std::vector<int>>& X) override; std::vector<int> predict(std::vector<std::vector<int>>& X) override;
torch::Tensor predict(torch::Tensor& X) override; torch::Tensor predict(torch::Tensor& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override; torch::Tensor predict_proba(torch::Tensor& X) override;
std::vector<int> predict_spode(std::vector<std::vector<int>>& test_data, int parent);
std::vector<std::vector<double>> predict_proba_threads(const std::vector<std::vector<int>>& test_data); std::vector<std::vector<double>> predict_proba_threads(const std::vector<std::vector<int>>& test_data);
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override; std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override; float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
@@ -47,7 +48,9 @@ namespace platform {
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; } std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
void setDebug(bool debug) { this->debug = debug; } void setDebug(bool debug) { this->debug = debug; }
std::vector<std::string> graph(const std::string& title = "") const override { return {}; } std::vector<std::string> graph(const std::string& title = "") const override { return {}; }
void set_active_parents(std::vector<int> active_parents) { aode_.set_active_parents(active_parents); } void set_active_parents(std::vector<int> active_parents) { for (const auto& parent : active_parents) aode_.set_active_parent(parent); }
void add_active_parent(int parent) { aode_.set_active_parent(parent); }
void remove_last_parent() { aode_.remove_last_parent(); }
protected: protected:
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override {}; void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override {};
@@ -64,9 +67,6 @@ namespace platform {
} }
} }
} }
template <typename T>
std::vector<T> to_vector(const torch::Tensor& y);
std::vector<std::vector<int>> to_matrix(const torch::Tensor& X);
Xaode aode_; Xaode aode_;
std::vector<double> weights_; std::vector<double> weights_;
CountingSemaphore& semaphore_; CountingSemaphore& semaphore_;

View File

@@ -9,34 +9,23 @@
#include <limits.h> #include <limits.h>
#include <tuple> #include <tuple>
#include "XBAODE.h" #include "XBAODE.h"
#include "TensorUtils.hpp"
namespace platform { namespace platform {
XBAODE::XBAODE() : semaphore_{ CountingSemaphore::getInstance() }, Boost(false) XBAODE::XBAODE() : semaphore_{ CountingSemaphore::getInstance() }, Boost(false)
{ {
} }
std::vector<int> XBAODE::initializeModels(const bayesnet::Smoothing_t smoothing) void XBAODE::trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing)
{ {
torch::Tensor weights_ = torch::full({ m }, 1.0, torch::kFloat64);
std::vector<int> featuresSelected = featureSelection(weights_);
for (const int& feature : featuresSelected) {
// std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
// model->fit(dataset, features, className, states, weights_, smoothing);
// models.push_back(std::move(model));
significanceModels.push_back(1.0); // They will be updated later in trainModel
n_models++;
}
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
return featuresSelected;
}
XBAODE& XBAODE::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
// aode_.fit(X, y, features, className, states, smoothing);
fitted = true; fitted = true;
X_train_ = TensorUtils::to_matrix(X_train);
y_train_ = TensorUtils::to_vector<int>(y_train);
X_test_ = TensorUtils::to_matrix(X_test);
y_test_ = TensorUtils::to_vector<int>(y_test);
// //
// Logging setup // Logging setup
// //
// loguru::set_thread_name("BoostAODE"); // loguru::set_thread_name("XBAODE");
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF; // loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
// loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX); // loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
@@ -46,16 +35,22 @@ namespace platform {
torch::Tensor weights_ = torch::full({ m }, 1.0, torch::kFloat64); torch::Tensor weights_ = torch::full({ m }, 1.0, torch::kFloat64);
bool finished = false; bool finished = false;
std::vector<int> featuresUsed; std::vector<int> featuresUsed;
int num_instances = m;
int num_attributes = n;
significanceModels.resize(num_attributes, 0.0);
aode_.fit(X_train_, y_train_, features, className, states, smoothing);
if (selectFeatures) { if (selectFeatures) {
featuresUsed = initializeModels(smoothing); featuresUsed = featureSelection(weights_);
auto ypred = predict(X_train); aode_.set_active_parents(featuresUsed);
notes.push_back("Used features in initialization: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
auto ypred = aode_.predict(X_train);
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_); std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
// Update significance of the models // Update significance of the models
for (int i = 0; i < n_models; ++i) { for (const auto& parent : featuresUsed) {
significanceModels[i] = alpha_t; significanceModels[parent] = alpha_t;
} }
if (finished) { if (finished) {
return *this; return;
} }
} }
int numItemsPack = 0; // The counter of the models inserted in the current pack int numItemsPack = 0; // The counter of the models inserted in the current pack
@@ -87,37 +82,35 @@ namespace platform {
while (counter++ < k && featureSelection.size() > 0) { while (counter++ < k && featureSelection.size() > 0) {
auto feature = featureSelection[0]; auto feature = featureSelection[0];
featureSelection.erase(featureSelection.begin()); featureSelection.erase(featureSelection.begin());
std::unique_ptr<Classifier> model; aode_.add_active_parent(feature);
//model = std::make_unique<SPODE>(feature);
//model->fit(dataset, features, className, states, weights_, smoothing);
alpha_t = 0.0; alpha_t = 0.0;
if (!block_update) { if (!block_update) {
torch::Tensor ypred; std::vector<int> ypred;
if (alpha_block) { if (alpha_block) {
// //
// Compute the prediction with the current ensemble + model // Compute the prediction with the current ensemble + model
// //
// Add the model to the ensemble // Add the model to the ensemble
n_models++; n_models++;
//models.push_back(std::move(model)); significanceModels[feature] = 1.0;
significanceModels.push_back(1); aode_.add_active_parent(feature);
// Compute the prediction // Compute the prediction
ypred = predict(X_train); ypred = aode_.predict(X_train_);
// Remove the model from the ensemble // Remove the model from the ensemble
//model = std::move(models.back()); significanceModels[feature] = 0.0;
models.pop_back(); aode_.remove_last_parent();
significanceModels.pop_back();
n_models--; n_models--;
} else { } else {
ypred = model->predict(X_train); ypred = aode_.predict_spode(X_train_, feature);
} }
// Step 3.1: Compute the classifier amout of say // Step 3.1: Compute the classifier amout of say
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_); auto ypred_t = torch::tensor(ypred);
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred_t, weights_);
} }
// Step 3.4: Store classifier and its accuracy to weigh its future vote // Step 3.4: Store classifier and its accuracy to weigh its future vote
numItemsPack++; numItemsPack++;
featuresUsed.push_back(feature); featuresUsed.push_back(feature);
//models.push_back(std::move(model)); aode_.add_active_parent(feature);
significanceModels.push_back(alpha_t); significanceModels.push_back(alpha_t);
n_models++; n_models++;
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size()); // VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
@@ -171,7 +164,7 @@ namespace platform {
status = bayesnet::WARNING; status = bayesnet::WARNING;
} }
notes.push_back("Number of models: " + std::to_string(n_models)); notes.push_back("Number of models: " + std::to_string(n_models));
return *this; return;
} }
// //
@@ -213,25 +206,6 @@ namespace platform {
return aode_.getClassNumStates(); return aode_.getClassNumStates();
} }
//
// Fit
//
// fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
XBAODE& XBAODE::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
aode_.fit(X, y, features, className, states, smoothing);
return *this;
}
XBAODE& XBAODE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
aode_.fit(dataset, features, className, states, smoothing);
return *this;
}
XBAODE& XBAODE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing)
{
aode_.fit(dataset, features, className, states, weights, smoothing);
return *this;
}
// //
// Predict // Predict
// //

View File

@@ -17,21 +17,14 @@
#include "XA1DE.h" #include "XA1DE.h"
namespace platform { namespace platform {
class XBAODE : public bayesnet::Boost { class XBAODE : public bayesnet::Boost {
public: public:
XBAODE(); XBAODE();
virtual ~XBAODE() = default; virtual ~XBAODE() = default;
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted"; const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
XBAODE& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
XBAODE& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
XBAODE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
XBAODE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
std::vector<int> predict(std::vector<std::vector<int>>& X) override; std::vector<int> predict(std::vector<std::vector<int>>& X) override;
torch::Tensor predict(torch::Tensor& X) override; torch::Tensor predict(torch::Tensor& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override; torch::Tensor predict_proba(torch::Tensor& X) override;
std::vector<std::vector<double>> predict_proba_threads(const std::vector<std::vector<int>>& test_data);
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override; std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override; float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
float score(torch::Tensor& X, torch::Tensor& y) override; float score(torch::Tensor& X, torch::Tensor& y) override;
@@ -50,10 +43,11 @@ namespace platform {
std::vector<std::string> graph(const std::string& title = "") const override { return {}; } std::vector<std::string> graph(const std::string& title = "") const override { return {}; }
void set_active_parents(std::vector<int> active_parents) { aode_.set_active_parents(active_parents); } void set_active_parents(std::vector<int> active_parents) { aode_.set_active_parents(active_parents); }
protected: protected:
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override {}; void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
private: private:
std::vector<int> initializeModels(const bayesnet::Smoothing_t smoothing); std::vector<std::vector<int>> X_train_, X_test_;
std::vector<int> y_train_, y_test_;
torch::Tensor dataset;
XA1DE aode_; XA1DE aode_;
int n_models; int n_models;
std::vector<double> weights_; std::vector<double> weights_;

View File

@@ -49,6 +49,9 @@ namespace platform {
// //
void init(const std::vector<int>& states) void init(const std::vector<int>& states)
{ {
//
// Check Valid input data
//
if (matrixState_ != MatrixState::EMPTY) { if (matrixState_ != MatrixState::EMPTY) {
throw std::logic_error("Xaode: already initialized."); throw std::logic_error("Xaode: already initialized.");
} }
@@ -61,6 +64,10 @@ namespace platform {
if (statesClass_ <= 0) { if (statesClass_ <= 0) {
throw std::invalid_argument("Xaode: class states must be > 0."); throw std::invalid_argument("Xaode: class states must be > 0.");
} }
//
// Initialize data structures
//
active_parents.resize(nFeatures_);
int totalStates = std::accumulate(states.begin(), states.end(), 0) - statesClass_; int totalStates = std::accumulate(states.begin(), states.end(), 0) - statesClass_;
// For p(x_i=si | c), we store them in a 1D array classFeatureProbs_ after we compute. // For p(x_i=si | c), we store them in a 1D array classFeatureProbs_ after we compute.
@@ -322,6 +329,11 @@ namespace platform {
normalize(scores); normalize(scores);
return scores; return scores;
} }
int predict_spode(const std::vector<int>& instance, int parent) const
{
auto probs = predict_proba_spode(instance, parent);
return (int)std::distance(probs.begin(), std::max_element(probs.begin(), probs.end()));
}
std::vector<double> predict_proba(std::vector<int>& instance) std::vector<double> predict_proba(std::vector<int>& instance)
{ {
Timer timer; Timer timer;
@@ -346,6 +358,10 @@ namespace platform {
duration_first += timer.getDuration(); timer.start(); duration_first += timer.getDuration(); timer.start();
int idx, base, sp, sc, parent_offset; int idx, base, sp, sc, parent_offset;
for (int parent = 1; parent < nFeatures_; ++parent) { for (int parent = 1; parent < nFeatures_; ++parent) {
// if parent is not in the active_parents, skip it
if (std::find(active_parents.begin(), active_parents.end(), parent) == active_parents.end()) {
continue;
}
sp = instance[parent]; sp = instance[parent];
parent_offset = pairOffset_[featureClassOffset_[parent] + sp]; parent_offset = pairOffset_[featureClassOffset_[parent] + sp];
for (int child = 0; child < parent; ++child) { for (int child = 0; child < parent; ++child) {
@@ -552,9 +568,13 @@ namespace platform {
{ {
return (nFeatures_ + 1) * nFeatures_; return (nFeatures_ + 1) * nFeatures_;
} }
void set_active_parents(std::vector<int> active_parents) void set_active_parent(int active_parent)
{ {
this->active_parents = active_parents; active_parents.push_back(active_parent);
}
void remove_last_parent()
{
active_parents.pop_back();
} }