Continue integration into trainModel

This commit is contained in:
2025-02-25 11:03:53 +01:00
parent ce6e192a33
commit 475a819a87
7 changed files with 156 additions and 122 deletions

View File

@@ -9,34 +9,23 @@
#include <limits.h>
#include <tuple>
#include "XBAODE.h"
#include "TensorUtils.hpp"
namespace platform {
XBAODE::XBAODE() : semaphore_{ CountingSemaphore::getInstance() }, Boost(false)
{
}
std::vector<int> XBAODE::initializeModels(const bayesnet::Smoothing_t smoothing)
void XBAODE::trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing)
{
torch::Tensor weights_ = torch::full({ m }, 1.0, torch::kFloat64);
std::vector<int> featuresSelected = featureSelection(weights_);
for (const int& feature : featuresSelected) {
// std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
// model->fit(dataset, features, className, states, weights_, smoothing);
// models.push_back(std::move(model));
significanceModels.push_back(1.0); // They will be updated later in trainModel
n_models++;
}
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
return featuresSelected;
}
XBAODE& XBAODE::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
// aode_.fit(X, y, features, className, states, smoothing);
fitted = true;
X_train_ = TensorUtils::to_matrix(X_train);
y_train_ = TensorUtils::to_vector<int>(y_train);
X_test_ = TensorUtils::to_matrix(X_test);
y_test_ = TensorUtils::to_vector<int>(y_test);
//
// Logging setup
//
// loguru::set_thread_name("BoostAODE");
// loguru::set_thread_name("XBAODE");
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
// loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
@@ -46,16 +35,22 @@ namespace platform {
torch::Tensor weights_ = torch::full({ m }, 1.0, torch::kFloat64);
bool finished = false;
std::vector<int> featuresUsed;
int num_instances = m;
int num_attributes = n;
significanceModels.resize(num_attributes, 0.0);
aode_.fit(X_train_, y_train_, features, className, states, smoothing);
if (selectFeatures) {
featuresUsed = initializeModels(smoothing);
auto ypred = predict(X_train);
featuresUsed = featureSelection(weights_);
aode_.set_active_parents(featuresUsed);
notes.push_back("Used features in initialization: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
auto ypred = aode_.predict(X_train);
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
// Update significance of the models
for (int i = 0; i < n_models; ++i) {
significanceModels[i] = alpha_t;
for (const auto& parent : featuresUsed) {
significanceModels[parent] = alpha_t;
}
if (finished) {
return *this;
return;
}
}
int numItemsPack = 0; // The counter of the models inserted in the current pack
@@ -87,37 +82,35 @@ namespace platform {
while (counter++ < k && featureSelection.size() > 0) {
auto feature = featureSelection[0];
featureSelection.erase(featureSelection.begin());
std::unique_ptr<Classifier> model;
//model = std::make_unique<SPODE>(feature);
//model->fit(dataset, features, className, states, weights_, smoothing);
aode_.add_active_parent(feature);
alpha_t = 0.0;
if (!block_update) {
torch::Tensor ypred;
std::vector<int> ypred;
if (alpha_block) {
//
// Compute the prediction with the current ensemble + model
//
// Add the model to the ensemble
n_models++;
//models.push_back(std::move(model));
significanceModels.push_back(1);
significanceModels[feature] = 1.0;
aode_.add_active_parent(feature);
// Compute the prediction
ypred = predict(X_train);
ypred = aode_.predict(X_train_);
// Remove the model from the ensemble
//model = std::move(models.back());
models.pop_back();
significanceModels.pop_back();
significanceModels[feature] = 0.0;
aode_.remove_last_parent();
n_models--;
} else {
ypred = model->predict(X_train);
ypred = aode_.predict_spode(X_train_, feature);
}
// Step 3.1: Compute the classifier amout of say
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
auto ypred_t = torch::tensor(ypred);
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred_t, weights_);
}
// Step 3.4: Store classifier and its accuracy to weigh its future vote
numItemsPack++;
featuresUsed.push_back(feature);
//models.push_back(std::move(model));
aode_.add_active_parent(feature);
significanceModels.push_back(alpha_t);
n_models++;
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
@@ -171,7 +164,7 @@ namespace platform {
status = bayesnet::WARNING;
}
notes.push_back("Number of models: " + std::to_string(n_models));
return *this;
return;
}
//
@@ -213,25 +206,6 @@ namespace platform {
return aode_.getClassNumStates();
}
//
// Fit
//
// fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
XBAODE& XBAODE::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
aode_.fit(X, y, features, className, states, smoothing);
return *this;
}
XBAODE& XBAODE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
aode_.fit(dataset, features, className, states, smoothing);
return *this;
}
XBAODE& XBAODE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing)
{
aode_.fit(dataset, features, className, states, weights, smoothing);
return *this;
}
//
// Predict
//