Initial Commit

This commit is contained in:
2024-01-09 17:45:06 +01:00
parent 73cf64d8c2
commit 455d9f3330
87 changed files with 41694 additions and 1 deletions

343
src/Platform/BestResults.cc Normal file
View File

@@ -0,0 +1,343 @@
#include <filesystem>
#include <set>
#include <fstream>
#include <iostream>
#include <sstream>
#include <algorithm>
#include "BestResults.h"
#include "Result.h"
#include "Colors.h"
#include "Statistics.h"
#include "BestResultsExcel.h"
#include "CLocale.h"
namespace fs = std::filesystem;
// function ftime_to_std::string, Code taken from
// https://stackoverflow.com/a/58237530/1389271
template <typename TP>
std::string ftime_to_string(TP tp)
{
auto sctp = std::chrono::time_point_cast<std::chrono::system_clock::duration>(tp - TP::clock::now()
+ std::chrono::system_clock::now());
auto tt = std::chrono::system_clock::to_time_t(sctp);
std::tm* gmt = std::gmtime(&tt);
std::stringstream buffer;
buffer << std::put_time(gmt, "%Y-%m-%d %H:%M");
return buffer.str();
}
namespace platform {
std::string BestResults::build()
{
auto files = loadResultFiles();
if (files.size() == 0) {
std::cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << std::endl;
exit(1);
}
json bests;
for (const auto& file : files) {
auto result = Result(path, file);
auto data = result.load();
for (auto const& item : data.at("results")) {
bool update = false;
// Check if results file contains only one dataset
auto datasetName = item.at("dataset").get<std::string>();
if (bests.contains(datasetName)) {
if (item.at("score").get<double>() > bests[datasetName].at(0).get<double>()) {
update = true;
}
} else {
update = true;
}
if (update) {
bests[datasetName] = { item.at("score").get<double>(), item.at("hyperparameters"), file };
}
}
}
std::string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
std::cout << Colors::MAGENTA() << "File " << bestFileName << " already exists and it shall be overwritten." << Colors::RESET() << std::endl;
}
std::ofstream file(bestFileName);
file << bests;
file.close();
return bestFileName;
}
std::string BestResults::bestResultFile()
{
return "best_results_" + score + "_" + model + ".json";
}
std::pair<std::string, std::string> getModelScore(std::string name)
{
// results_accuracy_BoostAODE_MacBookpro16_2023-09-06_12:27:00_1.json
int i = 0;
auto pos = name.find("_");
auto pos2 = name.find("_", pos + 1);
std::string score = name.substr(pos + 1, pos2 - pos - 1);
pos = name.find("_", pos2 + 1);
std::string model = name.substr(pos2 + 1, pos - pos2 - 1);
return { model, score };
}
std::vector<std::string> BestResults::loadResultFiles()
{
std::vector<std::string> files;
using std::filesystem::directory_iterator;
std::string fileModel, fileScore;
for (const auto& file : directory_iterator(path)) {
auto fileName = file.path().filename().string();
if (fileName.find(".json") != std::string::npos && fileName.find("results_") == 0) {
tie(fileModel, fileScore) = getModelScore(fileName);
if (score == fileScore && (model == fileModel || model == "any")) {
files.push_back(fileName);
}
}
}
return files;
}
json BestResults::loadFile(const std::string& fileName)
{
std::ifstream resultData(fileName);
if (resultData.is_open()) {
json data = json::parse(resultData);
return data;
}
throw std::invalid_argument("Unable to open result file. [" + fileName + "]");
}
std::vector<std::string> BestResults::getModels()
{
std::set<std::string> models;
std::vector<std::string> result;
auto files = loadResultFiles();
if (files.size() == 0) {
std::cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << std::endl;
exit(1);
}
std::string fileModel, fileScore;
for (const auto& file : files) {
// extract the model from the file name
tie(fileModel, fileScore) = getModelScore(file);
// add the model to the std::vector of models
models.insert(fileModel);
}
result = std::vector<std::string>(models.begin(), models.end());
return result;
}
std::vector<std::string> BestResults::getDatasets(json table)
{
std::vector<std::string> datasets;
for (const auto& dataset : table.items()) {
datasets.push_back(dataset.key());
}
return datasets;
}
void BestResults::buildAll()
{
auto models = getModels();
for (const auto& model : models) {
std::cout << "Building best results for model: " << model << std::endl;
this->model = model;
build();
}
model = "any";
}
void BestResults::listFile()
{
std::string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
} else {
std::cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << std::endl;
exit(1);
}
auto temp = ConfigLocale();
auto date = ftime_to_string(std::filesystem::last_write_time(bestFileName));
auto data = loadFile(bestFileName);
auto datasets = getDatasets(data);
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
int maxFileName = 0;
int maxHyper = 15;
for (auto const& item : data.items()) {
maxHyper = std::max(maxHyper, (int)item.value().at(1).dump().size());
maxFileName = std::max(maxFileName, (int)item.value().at(2).get<std::string>().size());
}
std::stringstream oss;
oss << Colors::GREEN() << "Best results for " << model << " as of " << date << std::endl;
std::cout << oss.str();
std::cout << std::string(oss.str().size() - 8, '-') << std::endl;
std::cout << Colors::GREEN() << " # " << std::setw(maxDatasetName + 1) << std::left << "Dataset" << "Score " << std::setw(maxFileName) << "File" << " Hyperparameters" << std::endl;
std::cout << "=== " << std::string(maxDatasetName, '=') << " =========== " << std::string(maxFileName, '=') << " " << std::string(maxHyper, '=') << std::endl;
auto i = 0;
bool odd = true;
double total = 0;
for (auto const& item : data.items()) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
double value = item.value().at(0).get<double>();
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
std::cout << std::setw(maxDatasetName) << std::left << item.key() << " ";
std::cout << std::setw(11) << std::setprecision(9) << std::fixed << value << " ";
std::cout << std::setw(maxFileName) << item.value().at(2).get<std::string>() << " ";
std::cout << item.value().at(1) << " ";
std::cout << std::endl;
total += value;
odd = !odd;
}
std::cout << Colors::GREEN() << "=== " << std::string(maxDatasetName, '=') << " ===========" << std::endl;
std::cout << std::setw(5 + maxDatasetName) << "Total.................. " << std::setw(11) << std::setprecision(8) << std::fixed << total << std::endl;
}
json BestResults::buildTableResults(std::vector<std::string> models)
{
json table;
auto maxDate = std::filesystem::file_time_type::max();
for (const auto& model : models) {
this->model = model;
std::string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
} else {
std::cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << std::endl;
exit(1);
}
auto dateWrite = std::filesystem::last_write_time(bestFileName);
if (dateWrite < maxDate) {
maxDate = dateWrite;
}
auto data = loadFile(bestFileName);
table[model] = data;
}
table["dateTable"] = ftime_to_string(maxDate);
return table;
}
void BestResults::printTableResults(std::vector<std::string> models, json table)
{
std::stringstream oss;
oss << Colors::GREEN() << "Best results for " << score << " as of " << table.at("dateTable").get<std::string>() << std::endl;
std::cout << oss.str();
std::cout << std::string(oss.str().size() - 8, '-') << std::endl;
std::cout << Colors::GREEN() << " # " << std::setw(maxDatasetName + 1) << std::left << std::string("Dataset");
for (const auto& model : models) {
std::cout << std::setw(maxModelName) << std::left << model << " ";
}
std::cout << std::endl;
std::cout << "=== " << std::string(maxDatasetName, '=') << " ";
for (const auto& model : models) {
std::cout << std::string(maxModelName, '=') << " ";
}
std::cout << std::endl;
auto i = 0;
bool odd = true;
std::map<std::string, double> totals;
int nDatasets = table.begin().value().size();
for (const auto& model : models) {
totals[model] = 0.0;
}
auto datasets = getDatasets(table.begin().value());
for (auto const& dataset : datasets) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
std::cout << std::setw(maxDatasetName) << std::left << dataset << " ";
double maxValue = 0;
// Find out the max value for this dataset
for (const auto& model : models) {
double value = table[model].at(dataset).at(0).get<double>();
if (value > maxValue) {
maxValue = value;
}
}
// Print the row with red colors on max values
for (const auto& model : models) {
std::string efectiveColor = color;
double value = table[model].at(dataset).at(0).get<double>();
if (value == maxValue) {
efectiveColor = Colors::RED();
}
totals[model] += value;
std::cout << efectiveColor << std::setw(maxModelName) << std::setprecision(maxModelName - 2) << std::fixed << value << " ";
}
std::cout << std::endl;
odd = !odd;
}
std::cout << Colors::GREEN() << "=== " << std::string(maxDatasetName, '=') << " ";
for (const auto& model : models) {
std::cout << std::string(maxModelName, '=') << " ";
}
std::cout << std::endl;
std::cout << Colors::GREEN() << std::setw(5 + maxDatasetName) << " Totals...................";
double max = 0.0;
for (const auto& total : totals) {
if (total.second > max) {
max = total.second;
}
}
for (const auto& model : models) {
std::string efectiveColor = Colors::GREEN();
if (totals[model] == max) {
efectiveColor = Colors::RED();
}
std::cout << efectiveColor << std::right << std::setw(maxModelName) << std::setprecision(maxModelName - 4) << std::fixed << totals[model] << " ";
}
std::cout << std::endl;
}
void BestResults::reportSingle(bool excel)
{
listFile();
if (excel) {
auto models = getModels();
// Build the table of results
json table = buildTableResults(models);
std::vector<std::string> datasets = getDatasets(table.begin().value());
BestResultsExcel excel(score, datasets);
excel.reportSingle(model, path + bestResultFile());
messageExcelFile(excel.getFileName());
}
}
void BestResults::reportAll(bool excel)
{
auto models = getModels();
// Build the table of results
json table = buildTableResults(models);
std::vector<std::string> datasets = getDatasets(table.begin().value());
maxModelName = (*max_element(models.begin(), models.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
maxModelName = std::max(12, maxModelName);
maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
maxDatasetName = std::max(25, maxDatasetName);
// Print the table of results
printTableResults(models, table);
// Compute the Friedman test
std::map<std::string, std::map<std::string, float>> ranksModels;
if (friedman) {
Statistics stats(models, datasets, table, significance);
auto result = stats.friedmanTest();
stats.postHocHolmTest(result);
ranksModels = stats.getRanks();
}
if (excel) {
BestResultsExcel excel(score, datasets);
excel.reportAll(models, table, ranksModels, friedman, significance);
if (friedman) {
int idx = -1;
double min = 2000;
// Find out the control model
auto totals = std::vector<double>(models.size(), 0.0);
for (const auto& dataset : datasets) {
for (int i = 0; i < models.size(); ++i) {
totals[i] += ranksModels[dataset][models[i]];
}
}
for (int i = 0; i < models.size(); ++i) {
if (totals[i] < min) {
min = totals[i];
idx = i;
}
}
model = models.at(idx);
excel.reportSingle(model, path + bestResultFile());
}
messageExcelFile(excel.getFileName());
}
}
void BestResults::messageExcelFile(const std::string& fileName)
{
std::cout << Colors::YELLOW() << "** Excel file generated: " << fileName << Colors::RESET() << std::endl;
}
}

View File

@@ -0,0 +1,36 @@
#ifndef BESTRESULTS_H
#define BESTRESULTS_H
#include <string>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
namespace platform {
class BestResults {
public:
explicit BestResults(const std::string& path, const std::string& score, const std::string& model, bool friedman, double significance = 0.05)
: path(path), score(score), model(model), friedman(friedman), significance(significance)
{
}
std::string build();
void reportSingle(bool excel);
void reportAll(bool excel);
void buildAll();
private:
std::vector<std::string> getModels();
std::vector<std::string> getDatasets(json table);
std::vector<std::string> loadResultFiles();
void messageExcelFile(const std::string& fileName);
json buildTableResults(std::vector<std::string> models);
void printTableResults(std::vector<std::string> models, json table);
std::string bestResultFile();
json loadFile(const std::string& fileName);
void listFile();
std::string path;
std::string score;
std::string model;
bool friedman;
double significance;
int maxModelName = 0;
int maxDatasetName = 0;
};
}
#endif //BESTRESULTS_H

View File

@@ -0,0 +1,300 @@
#include <sstream>
#include "BestResultsExcel.h"
#include "Paths.h"
#include <map>
#include <nlohmann/json.hpp>
#include "Statistics.h"
#include "ReportExcel.h"
namespace platform {
json loadResultData(const std::string& fileName)
{
json data;
std::ifstream resultData(fileName);
if (resultData.is_open()) {
data = json::parse(resultData);
} else {
throw std::invalid_argument("Unable to open result file. [" + fileName + "]");
}
return data;
}
std::string getColumnName(int colNum)
{
std::string columnName = "";
if (colNum == 0)
return "A";
while (colNum > 0) {
int modulo = colNum % 26;
columnName = char(65 + modulo) + columnName;
colNum = (int)((colNum - modulo) / 26);
}
return columnName;
}
BestResultsExcel::BestResultsExcel(const std::string& score, const std::vector<std::string>& datasets) : score(score), datasets(datasets)
{
workbook = workbook_new((Paths::excel() + fileName).c_str());
setProperties("Best Results");
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
datasetNameSize = std::max(datasetNameSize, maxDatasetName);
createFormats();
}
void BestResultsExcel::reportAll(const std::vector<std::string>& models, const json& table, const std::map<std::string, std::map<std::string, float>>& ranks, bool friedman, double significance)
{
this->table = table;
this->models = models;
ranksModels = ranks;
this->friedman = friedman;
this->significance = significance;
worksheet = workbook_add_worksheet(workbook, "Best Results");
int maxModelName = (*std::max_element(models.begin(), models.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
modelNameSize = std::max(modelNameSize, maxModelName);
formatColumns();
build();
}
void BestResultsExcel::reportSingle(const std::string& model, const std::string& fileName)
{
worksheet = workbook_add_worksheet(workbook, "Report");
if (FILE* fileTest = fopen(fileName.c_str(), "r")) {
fclose(fileTest);
} else {
std::cerr << "File " << fileName << " doesn't exist." << std::endl;
exit(1);
}
json data = loadResultData(fileName);
std::string title = "Best results for " + model;
worksheet_merge_range(worksheet, 0, 0, 0, 4, title.c_str(), styles["headerFirst"]);
// Body header
row = 3;
int col = 1;
writeString(row, 0, "", "bodyHeader");
writeString(row, 1, "Dataset", "bodyHeader");
writeString(row, 2, "Score", "bodyHeader");
writeString(row, 3, "File", "bodyHeader");
writeString(row, 4, "Hyperparameters", "bodyHeader");
auto i = 0;
std::string hyperparameters;
int hypSize = 22;
std::map<std::string, std::string> files; // map of files imported and their tabs
for (auto const& item : data.items()) {
row++;
writeInt(row, 0, i++, "ints");
writeString(row, 1, item.key().c_str(), "text");
writeDouble(row, 2, item.value().at(0).get<double>(), "result");
auto fileName = item.value().at(2).get<std::string>();
std::string hyperlink = "";
try {
hyperlink = files.at(fileName);
}
catch (const std::out_of_range& oor) {
auto tabName = "table_" + std::to_string(i);
auto worksheetNew = workbook_add_worksheet(workbook, tabName.c_str());
json data = loadResultData(Paths::results() + fileName);
auto report = ReportExcel(data, false, workbook, worksheetNew);
report.show();
hyperlink = "#table_" + std::to_string(i);
files[fileName] = hyperlink;
}
hyperlink += "!H" + std::to_string(i + 6);
std::string fileNameText = "=HYPERLINK(\"" + hyperlink + "\",\"" + fileName + "\")";
worksheet_write_formula(worksheet, row, 3, fileNameText.c_str(), efectiveStyle("text"));
hyperparameters = item.value().at(1).dump();
if (hyperparameters.size() > hypSize) {
hypSize = hyperparameters.size();
}
writeString(row, 4, hyperparameters, "text");
}
row++;
// Set Totals
writeString(row, 1, "Total", "bodyHeader");
std::stringstream oss;
auto colName = getColumnName(2);
oss << "=sum(" << colName << "5:" << colName << row << ")";
worksheet_write_formula(worksheet, row, 2, oss.str().c_str(), styles["bodyHeader_odd"]);
// Set format
worksheet_freeze_panes(worksheet, 4, 2);
std::vector<int> columns_sizes = { 5, datasetNameSize, modelNameSize, 66, hypSize + 1 };
for (int i = 0; i < columns_sizes.size(); ++i) {
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
}
}
BestResultsExcel::~BestResultsExcel()
{
workbook_close(workbook);
}
void BestResultsExcel::formatColumns()
{
worksheet_freeze_panes(worksheet, 4, 2);
std::vector<int> columns_sizes = { 5, datasetNameSize };
for (int i = 0; i < models.size(); ++i) {
columns_sizes.push_back(modelNameSize);
}
for (int i = 0; i < columns_sizes.size(); ++i) {
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
}
}
void BestResultsExcel::addConditionalFormat(std::string formula)
{
// Add conditional format for max/min values in scores/ranks sheets
lxw_format* custom_format = workbook_add_format(workbook);
format_set_bg_color(custom_format, 0xFFC7CE);
format_set_font_color(custom_format, 0x9C0006);
// Create a conditional format object. A static object would also work.
lxw_conditional_format* conditional_format = (lxw_conditional_format*)calloc(1, sizeof(lxw_conditional_format));
conditional_format->type = LXW_CONDITIONAL_TYPE_FORMULA;
std::string col = getColumnName(models.size() + 1);
std::stringstream oss;
oss << "=C5=" << formula << "($C5:$" << col << "5)";
auto formulaValue = oss.str();
conditional_format->value_string = formulaValue.c_str();
conditional_format->format = custom_format;
worksheet_conditional_format_range(worksheet, 4, 2, datasets.size() + 3, models.size() + 1, conditional_format);
}
void BestResultsExcel::build()
{
// Create Sheet with scores
header(false);
body(false);
// Add conditional format for max values
addConditionalFormat("max");
footer(false);
if (friedman) {
// Create Sheet with ranks
worksheet = workbook_add_worksheet(workbook, "Ranks");
formatColumns();
header(true);
body(true);
addConditionalFormat("min");
footer(true);
// Create Sheet with Friedman Test
doFriedman();
}
}
std::string BestResultsExcel::getFileName()
{
return Paths::excel() + fileName;
}
void BestResultsExcel::header(bool ranks)
{
row = 0;
std::string message = ranks ? "Ranks for score " + score : "Best results for " + score;
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), message.c_str(), styles["headerFirst"]);
// Body header
row = 3;
int col = 1;
writeString(row, 0, "", "bodyHeader");
writeString(row, 1, "Dataset", "bodyHeader");
for (const auto& model : models) {
writeString(row, ++col, model.c_str(), "bodyHeader");
}
}
void BestResultsExcel::body(bool ranks)
{
row = 4;
int i = 0;
json origin = table.begin().value();
for (auto const& item : origin.items()) {
writeInt(row, 0, i++, "ints");
writeString(row, 1, item.key().c_str(), "text");
int col = 1;
for (const auto& model : models) {
double value = ranks ? ranksModels[item.key()][model] : table[model].at(item.key()).at(0).get<double>();
writeDouble(row, ++col, value, "result");
}
++row;
}
}
void BestResultsExcel::footer(bool ranks)
{
// Set Totals
writeString(row, 1, "Total", "bodyHeader");
int col = 1;
for (const auto& model : models) {
std::stringstream oss;
auto colName = getColumnName(col + 1);
oss << "=SUM(" << colName << "5:" << colName << row << ")";
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
}
if (ranks) {
row++;
writeString(row, 1, "Average ranks", "bodyHeader");
int col = 1;
for (const auto& model : models) {
auto colName = getColumnName(col + 1);
std::stringstream oss;
oss << "=SUM(" << colName << "5:" << colName << row - 1 << ")/" << datasets.size();
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
}
}
}
void BestResultsExcel::doFriedman()
{
worksheet = workbook_add_worksheet(workbook, "Friedman");
std::vector<int> columns_sizes = { 5, datasetNameSize };
for (int i = 0; i < models.size(); ++i) {
columns_sizes.push_back(modelNameSize);
}
for (int i = 0; i < columns_sizes.size(); ++i) {
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
}
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), "Friedman Test", styles["headerFirst"]);
row = 2;
Statistics stats(models, datasets, table, significance, false);
auto result = stats.friedmanTest();
stats.postHocHolmTest(result);
auto friedmanResult = stats.getFriedmanResult();
auto holmResult = stats.getHolmResult();
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Null hypothesis: H0 'There is no significant differences between all the classifiers.'", styles["headerSmall"]);
row += 2;
writeString(row, 1, "Friedman Q", "bodyHeader");
writeDouble(row, 2, friedmanResult.statistic, "bodyHeader");
row++;
writeString(row, 1, "Critical χ2 value", "bodyHeader");
writeDouble(row, 2, friedmanResult.criticalValue, "bodyHeader");
row++;
writeString(row, 1, "p-value", "bodyHeader");
writeDouble(row, 2, friedmanResult.pvalue, "bodyHeader");
writeString(row, 3, friedmanResult.reject ? "<" : ">", "bodyHeader");
writeDouble(row, 4, significance, "bodyHeader");
writeString(row, 5, friedmanResult.reject ? "Reject H0" : "Accept H0", "bodyHeader");
row += 3;
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Holm Test", styles["headerFirst"]);
row += 2;
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Null hypothesis: H0 'There is no significant differences between the control model and the other models.'", styles["headerSmall"]);
row += 2;
std::string controlModel = "Control Model: " + holmResult.model;
worksheet_merge_range(worksheet, row, 1, row, 7, controlModel.c_str(), styles["bodyHeader_odd"]);
row++;
writeString(row, 1, "Model", "bodyHeader");
writeString(row, 2, "p-value", "bodyHeader");
writeString(row, 3, "Rank", "bodyHeader");
writeString(row, 4, "Win", "bodyHeader");
writeString(row, 5, "Tie", "bodyHeader");
writeString(row, 6, "Loss", "bodyHeader");
writeString(row, 7, "Reject H0", "bodyHeader");
row++;
bool first = true;
for (const auto& item : holmResult.holmLines) {
writeString(row, 1, item.model, "text");
if (first) {
// Control model info
first = false;
writeString(row, 2, "", "text");
writeDouble(row, 3, item.rank, "result");
writeString(row, 4, "", "text");
writeString(row, 5, "", "text");
writeString(row, 6, "", "text");
writeString(row, 7, "", "textCentered");
} else {
// Rest of the models info
writeDouble(row, 2, item.pvalue, "result");
writeDouble(row, 3, item.rank, "result");
writeInt(row, 4, item.wtl.win, "ints");
writeInt(row, 5, item.wtl.tie, "ints");
writeInt(row, 6, item.wtl.loss, "ints");
writeString(row, 7, item.reject ? "Yes" : "No", "textCentered");
}
row++;
}
}
}

View File

@@ -0,0 +1,39 @@
#ifndef BESTRESULTS_EXCEL_H
#define BESTRESULTS_EXCEL_H
#include "ExcelFile.h"
#include <vector>
#include <map>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
namespace platform {
class BestResultsExcel : ExcelFile {
public:
BestResultsExcel(const std::string& score, const std::vector<std::string>& datasets);
~BestResultsExcel();
void reportAll(const std::vector<std::string>& models, const json& table, const std::map<std::string, std::map<std::string, float>>& ranks, bool friedman, double significance);
void reportSingle(const std::string& model, const std::string& fileName);
std::string getFileName();
private:
void build();
void header(bool ranks);
void body(bool ranks);
void footer(bool ranks);
void formatColumns();
void doFriedman();
void addConditionalFormat(std::string formula);
const std::string fileName = "BestResults.xlsx";
std::string score;
std::vector<std::string> models;
std::vector<std::string> datasets;
json table;
std::map<std::string, std::map<std::string, float>> ranksModels;
bool friedman;
double significance;
int modelNameSize = 12; // Min size of the column
int datasetNameSize = 25; // Min size of the column
};
}
#endif //BESTRESULTS_EXCEL_H

28
src/Platform/BestScore.h Normal file
View File

@@ -0,0 +1,28 @@
#ifndef BESTSCORE_H
#define BESTSCORE_H
#include <string>
#include <map>
#include <utility>
#include "DotEnv.h"
namespace platform {
class BestScore {
public:
static std::pair<std::string, double> getScore(const std::string& metric)
{
static std::map<std::pair<std::string, std::string>, std::pair<std::string, double>> data = {
{{"discretiz", "accuracy"}, {"STree_default (linear-ovo)", 22.109799}},
{{"odte", "accuracy"}, {"STree_default (linear-ovo)", 22.109799}},
};
auto env = platform::DotEnv();
std::string experiment = env.get("experiment");
try {
return data[{experiment, metric}];
}
catch (...) {
return { "", 0.0 };
}
}
};
}
#endif

22
src/Platform/CLocale.h Normal file
View File

@@ -0,0 +1,22 @@
#ifndef LOCALE_H
#define LOCALE_H
#include <locale>
#include <iostream>
#include <string>
namespace platform {
struct separation : std::numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
std::string do_grouping() const { return "\03"; }
};
class ConfigLocale {
public:
explicit ConfigLocale()
{
std::locale mylocale(std::cout.getloc(), new separation);
std::locale::global(mylocale);
std::cout.imbue(mylocale);
}
};
}
#endif

View File

@@ -0,0 +1,28 @@
include_directories(
${Platform_SOURCE_DIR}/lib/PyClassifiers/lib/BayesNet/src/BayesNet
${Platform_SOURCE_DIR}/lib/PyClassifiers/lib/BayesNet/lib/folding
${Platform_SOURCE_DIR}/lib/PyClassifiers/lib/BayesNet/lib/mdlp
${Platform_SOURCE_DIR}/lib/PyClassifiers/lib/BayesNet/lib/json/include
${Platform_SOURCE_DIR}/lib/PyClassifiers/src/PyClassifiers
${Platform_SOURCE_DIR}/src/Platform
${Platform_SOURCE_DIR}/lib/Files
${Platform_SOURCE_DIR}/lib/mdlp
${Platform_SOURCE_DIR}/lib/argparse/include
${Platform_SOURCE_DIR}/lib/json/include
${Platform_SOURCE_DIR}/lib/libxlsxwriter/include
${Python3_INCLUDE_DIRS}
${MPI_CXX_INCLUDE_DIRS}
${CMAKE_BINARY_DIR}/configured_files/include
)
add_executable(b_best b_best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
add_executable(b_grid b_grid.cc GridSearch.cc GridData.cc HyperParameters.cc Datasets.cc Dataset.cc Models.cc)
add_executable(b_list b_list.cc Datasets.cc Dataset.cc)
add_executable(b_main b_main.cc Experiment.cc Datasets.cc Dataset.cc Models.cc HyperParameters.cc ReportConsole.cc ReportBase.cc)
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
target_link_libraries(b_grid PyClassifiers ${MPI_CXX_LIBRARIES})
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(b_main PyClassifiers BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)

15
src/Platform/Colors.h Normal file
View File

@@ -0,0 +1,15 @@
#ifndef COLORS_H
#define COLORS_H
class Colors {
public:
static std::string MAGENTA() { return "\033[1;35m"; }
static std::string BLUE() { return "\033[1;34m"; }
static std::string CYAN() { return "\033[1;36m"; }
static std::string GREEN() { return "\033[1;32m"; }
static std::string YELLOW() { return "\033[1;33m"; }
static std::string RED() { return "\033[1;31m"; }
static std::string WHITE() { return "\033[1;37m"; }
static std::string IBLUE() { return "\033[0;94m"; }
static std::string RESET() { return "\033[0m"; }
};
#endif // COLORS_H

View File

@@ -0,0 +1,87 @@
#include "CommandParser.h"
#include <iostream>
#include <sstream>
#include <algorithm>
#include "Colors.h"
#include "Utils.h"
namespace platform {
void CommandParser::messageError(const std::string& message)
{
std::cout << Colors::RED() << message << Colors::RESET() << std::endl;
}
std::pair<char, int> CommandParser::parse(const std::string& color, const std::vector<std::tuple<std::string, char, bool>>& options, const char defaultCommand, const int maxIndex)
{
bool finished = false;
while (!finished) {
std::stringstream oss;
std::string line;
oss << color << "Choose option (";
bool first = true;
for (auto& option : options) {
if (first) {
first = false;
} else {
oss << ", ";
}
oss << std::get<char>(option) << "=" << std::get<std::string>(option);
}
oss << "): ";
std::cout << oss.str();
getline(std::cin, line);
std::cout << Colors::RESET();
line = trim(line);
if (line.size() == 0)
continue;
if (all_of(line.begin(), line.end(), ::isdigit)) {
command = defaultCommand;
index = stoi(line);
if (index > maxIndex || index < 0) {
messageError("Index out of range");
continue;
}
finished = true;
break;
}
bool found = false;
for (auto& option : options) {
if (line[0] == std::get<char>(option)) {
found = true;
// it's a match
line.erase(line.begin());
line = trim(line);
if (std::get<bool>(option)) {
// The option requires a value
if (line.size() == 0) {
messageError("Option " + std::get<std::string>(option) + " requires a value");
break;
}
try {
index = stoi(line);
if (index > maxIndex || index < 0) {
messageError("Index out of range");
break;
}
}
catch (const std::invalid_argument& ia) {
messageError("Invalid value: " + line);
break;
}
} else {
if (line.size() > 0) {
messageError("option " + std::get<std::string>(option) + " doesn't accept values");
break;
}
}
command = std::get<char>(option);
finished = true;
break;
}
}
if (!found) {
messageError("I don't know " + line);
}
}
return { command, index };
}
} /* namespace platform */

View File

@@ -0,0 +1,20 @@
#ifndef COMMAND_PARSER_H
#define COMMAND_PARSER_H
#include <string>
#include <vector>
#include <tuple>
namespace platform {
class CommandParser {
public:
CommandParser() = default;
std::pair<char, int> parse(const std::string& color, const std::vector<std::tuple<std::string, char, bool>>& options, const char defaultCommand, const int maxIndex);
char getCommand() const { return command; };
int getIndex() const { return index; };
private:
void messageError(const std::string& message);
char command;
int index;
};
} /* namespace platform */
#endif /* COMMAND_PARSER_H */

215
src/Platform/Dataset.cc Normal file
View File

@@ -0,0 +1,215 @@
#include "Dataset.h"
#include "ArffFiles.h"
#include <fstream>
namespace platform {
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
{
}
std::string Dataset::getName() const
{
return name;
}
std::string Dataset::getClassName() const
{
return className;
}
std::vector<std::string> Dataset::getFeatures() const
{
if (loaded) {
return features;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNFeatures() const
{
if (loaded) {
return n_features;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNSamples() const
{
if (loaded) {
return n_samples;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
std::map<std::string, std::vector<int>> Dataset::getStates() const
{
if (loaded) {
return states;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
pair<std::vector<std::vector<float>>&, std::vector<int>&> Dataset::getVectors()
{
if (loaded) {
return { Xv, yv };
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
pair<std::vector<std::vector<int>>&, std::vector<int>&> Dataset::getVectorsDiscretized()
{
if (loaded) {
return { Xd, yv };
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
{
if (loaded) {
buildTensors();
return { X, y };
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
void Dataset::load_csv()
{
ifstream file(path + "/" + name + ".csv");
if (file.is_open()) {
std::string line;
getline(file, line);
std::vector<std::string> tokens = split(line, ',');
features = std::vector<std::string>(tokens.begin(), tokens.end() - 1);
if (className == "-1") {
className = tokens.back();
}
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(std::vector<float>());
}
while (getline(file, line)) {
tokens = split(line, ',');
for (auto i = 0; i < features.size(); ++i) {
Xv[i].push_back(stof(tokens[i]));
}
yv.push_back(stoi(tokens.back()));
}
file.close();
} else {
throw std::invalid_argument("Unable to open dataset file.");
}
}
void Dataset::computeStates()
{
for (int i = 0; i < features.size(); ++i) {
states[features[i]] = std::vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
}
states[className] = std::vector<int>(*max_element(yv.begin(), yv.end()) + 1);
iota(begin(states.at(className)), end(states.at(className)), 0);
}
void Dataset::load_arff()
{
auto arff = ArffFiles();
arff.load(path + "/" + name + ".arff", className);
// Get Dataset X, y
Xv = arff.getX();
yv = arff.getY();
// Get className & Features
className = arff.getClassName();
auto attributes = arff.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
}
std::vector<std::string> tokenize(std::string line)
{
std::vector<std::string> tokens;
for (auto i = 0; i < line.size(); ++i) {
if (line[i] == ' ' || line[i] == '\t' || line[i] == '\n') {
std::string token = line.substr(0, i);
tokens.push_back(token);
line.erase(line.begin(), line.begin() + i + 1);
i = 0;
while (line[i] == ' ' || line[i] == '\t' || line[i] == '\n')
line.erase(line.begin(), line.begin() + i + 1);
}
}
if (line.size() > 0) {
tokens.push_back(line);
}
return tokens;
}
void Dataset::load_rdata()
{
ifstream file(path + "/" + name + "_R.dat");
if (file.is_open()) {
std::string line;
getline(file, line);
line = ArffFiles::trim(line);
std::vector<std::string> tokens = tokenize(line);
transform(tokens.begin(), tokens.end() - 1, back_inserter(features), [](const auto& attribute) { return ArffFiles::trim(attribute); });
if (className == "-1") {
className = ArffFiles::trim(tokens.back());
}
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(std::vector<float>());
}
while (getline(file, line)) {
tokens = tokenize(line);
// We have to skip the first token, which is the instance number.
for (auto i = 1; i < features.size() + 1; ++i) {
const float value = stof(tokens[i]);
Xv[i - 1].push_back(value);
}
yv.push_back(stoi(tokens.back()));
}
file.close();
} else {
throw std::invalid_argument("Unable to open dataset file.");
}
}
void Dataset::load()
{
if (loaded) {
return;
}
if (fileType == CSV) {
load_csv();
} else if (fileType == ARFF) {
load_arff();
} else if (fileType == RDATA) {
load_rdata();
}
if (discretize) {
Xd = discretizeDataset(Xv, yv);
computeStates();
}
n_samples = Xv[0].size();
n_features = Xv.size();
loaded = true;
}
void Dataset::buildTensors()
{
if (discretize) {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kInt32);
} else {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kFloat32);
}
for (int i = 0; i < features.size(); ++i) {
if (discretize) {
X.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
} else {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
}
}
y = torch::tensor(yv, torch::kInt32);
}
std::vector<mdlp::labels_t> Dataset::discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y)
{
std::vector<mdlp::labels_t> Xd;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
Xd.push_back(xd);
}
return Xd;
}
}

78
src/Platform/Dataset.h Normal file
View File

@@ -0,0 +1,78 @@
#ifndef DATASET_H
#define DATASET_H
#include <torch/torch.h>
#include <map>
#include <vector>
#include <string>
#include "CPPFImdlp.h"
#include "Utils.h"
namespace platform {
enum fileType_t { CSV, ARFF, RDATA };
class SourceData {
public:
SourceData(std::string source)
{
if (source == "Surcov") {
path = "datasets/";
fileType = CSV;
} else if (source == "Arff") {
path = "datasets/";
fileType = ARFF;
} else if (source == "Tanveer") {
path = "data/";
fileType = RDATA;
} else {
throw std::invalid_argument("Unknown source.");
}
}
std::string getPath()
{
return path;
}
fileType_t getFileType()
{
return fileType;
}
private:
std::string path;
fileType_t fileType;
};
class Dataset {
private:
std::string path;
std::string name;
fileType_t fileType;
std::string className;
int n_samples{ 0 }, n_features{ 0 };
std::vector<std::string> features;
std::map<std::string, std::vector<int>> states;
bool loaded;
bool discretize;
torch::Tensor X, y;
std::vector<std::vector<float>> Xv;
std::vector<std::vector<int>> Xd;
std::vector<int> yv;
void buildTensors();
void load_csv();
void load_arff();
void load_rdata();
void computeStates();
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y);
public:
Dataset(const std::string& path, const std::string& name, const std::string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
explicit Dataset(const Dataset&);
std::string getName() const;
std::string getClassName() const;
std::vector<string> getFeatures() const;
std::map<std::string, std::vector<int>> getStates() const;
std::pair<vector<std::vector<float>>&, std::vector<int>&> getVectors();
std::pair<vector<std::vector<int>>&, std::vector<int>&> getVectorsDiscretized();
std::pair<torch::Tensor&, torch::Tensor&> getTensors();
int getNFeatures() const;
int getNSamples() const;
void load();
const bool inline isLoaded() const { return loaded; };
};
};
#endif

129
src/Platform/Datasets.cc Normal file
View File

@@ -0,0 +1,129 @@
#include "Datasets.h"
#include <fstream>
namespace platform {
void Datasets::load()
{
auto sd = SourceData(sfileType);
fileType = sd.getFileType();
path = sd.getPath();
ifstream catalog(path + "all.txt");
if (catalog.is_open()) {
std::string line;
while (getline(catalog, line)) {
if (line.empty() || line[0] == '#') {
continue;
}
std::vector<std::string> tokens = split(line, ',');
std::string name = tokens[0];
std::string className;
if (tokens.size() == 1) {
className = "-1";
} else {
className = tokens[1];
}
datasets[name] = make_unique<Dataset>(path, name, className, discretize, fileType);
}
catalog.close();
} else {
throw std::invalid_argument("Unable to open catalog file. [" + path + "all.txt" + "]");
}
}
std::vector<std::string> Datasets::getNames()
{
std::vector<std::string> result;
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
return result;
}
std::vector<std::string> Datasets::getFeatures(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getFeatures();
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
map<std::string, std::vector<int>> Datasets::getStates(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getStates();
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
void Datasets::loadDataset(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return;
} else {
datasets.at(name)->load();
}
}
std::string Datasets::getClassName(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getClassName();
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
int Datasets::getNSamples(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getNSamples();
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
int Datasets::getNClasses(const std::string& name)
{
if (datasets.at(name)->isLoaded()) {
auto className = datasets.at(name)->getClassName();
if (discretize) {
auto states = getStates(name);
return states.at(className).size();
}
auto [Xv, yv] = getVectors(name);
return *std::max_element(yv.begin(), yv.end()) + 1;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
std::vector<int> Datasets::getClassesCounts(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
auto [Xv, yv] = datasets.at(name)->getVectors();
std::vector<int> counts(*std::max_element(yv.begin(), yv.end()) + 1);
for (auto y : yv) {
counts[y]++;
}
return counts;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
pair<std::vector<std::vector<float>>&, std::vector<int>&> Datasets::getVectors(const std::string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getVectors();
}
pair<std::vector<std::vector<int>>&, std::vector<int>&> Datasets::getVectorsDiscretized(const std::string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getVectorsDiscretized();
}
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(const std::string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getTensors();
}
bool Datasets::isDataset(const std::string& name) const
{
return datasets.find(name) != datasets.end();
}
}

30
src/Platform/Datasets.h Normal file
View File

@@ -0,0 +1,30 @@
#ifndef DATASETS_H
#define DATASETS_H
#include "Dataset.h"
namespace platform {
class Datasets {
private:
std::string path;
fileType_t fileType;
std::string sfileType;
std::map<std::string, std::unique_ptr<Dataset>> datasets;
bool discretize;
void load(); // Loads the list of datasets
public:
explicit Datasets(bool discretize, std::string sfileType) : discretize(discretize), sfileType(sfileType) { load(); };
std::vector<string> getNames();
std::vector<string> getFeatures(const std::string& name) const;
int getNSamples(const std::string& name) const;
std::string getClassName(const std::string& name) const;
int getNClasses(const std::string& name);
std::vector<int> getClassesCounts(const std::string& name) const;
std::map<std::string, std::vector<int>> getStates(const std::string& name) const;
std::pair<std::vector<std::vector<float>>&, std::vector<int>&> getVectors(const std::string& name);
std::pair<std::vector<std::vector<int>>&, std::vector<int>&> getVectorsDiscretized(const std::string& name);
std::pair<torch::Tensor&, torch::Tensor&> getTensors(const std::string& name);
bool isDataset(const std::string& name) const;
void loadDataset(const std::string& name) const;
};
};
#endif

55
src/Platform/DotEnv.h Normal file
View File

@@ -0,0 +1,55 @@
#ifndef DOTENV_H
#define DOTENV_H
#include <string>
#include <map>
#include <fstream>
#include <sstream>
#include <algorithm>
#include <iostream>
#include "Utils.h"
//#include "Dataset.h"
namespace platform {
class DotEnv {
private:
std::map<std::string, std::string> env;
public:
DotEnv()
{
std::ifstream file(".env");
if (!file.is_open()) {
std::cerr << "File .env not found" << std::endl;
exit(1);
}
std::string line;
while (std::getline(file, line)) {
line = trim(line);
if (line.empty() || line[0] == '#') {
continue;
}
std::istringstream iss(line);
std::string key, value;
if (std::getline(iss, key, '=') && std::getline(iss, value)) {
env[key] = value;
}
}
}
std::string get(const std::string& key)
{
return env.at(key);
}
std::vector<int> getSeeds()
{
auto seeds = std::vector<int>();
auto seeds_str = env["seeds"];
seeds_str = trim(seeds_str);
seeds_str = seeds_str.substr(1, seeds_str.size() - 2);
auto seeds_str_split = split(seeds_str, ',');
transform(seeds_str_split.begin(), seeds_str_split.end(), back_inserter(seeds), [](const std::string& str) {
return stoi(str);
});
return seeds;
}
};
}
#endif

168
src/Platform/ExcelFile.cc Normal file
View File

@@ -0,0 +1,168 @@
#include "ExcelFile.h"
namespace platform {
ExcelFile::ExcelFile()
{
setDefault();
}
ExcelFile::ExcelFile(lxw_workbook* workbook) : workbook(workbook)
{
setDefault();
}
ExcelFile::ExcelFile(lxw_workbook* workbook, lxw_worksheet* worksheet) : workbook(workbook), worksheet(worksheet)
{
setDefault();
}
void ExcelFile::setDefault()
{
normalSize = 14; //font size for report body
row = 0;
colorTitle = 0xB1A0C7;
colorOdd = 0xDCE6F1;
colorEven = 0xFDE9D9;
}
lxw_workbook* ExcelFile::getWorkbook()
{
return workbook;
}
void ExcelFile::setProperties(std::string title)
{
char line[title.size() + 1];
strcpy(line, title.c_str());
lxw_doc_properties properties = {
.title = line,
.subject = (char*)"Machine learning results",
.author = (char*)"Ricardo Montañana Gómez",
.manager = (char*)"Dr. J. A. Gámez, Dr. J. M. Puerta",
.company = (char*)"UCLM",
.comments = (char*)"Created with libxlsxwriter and c++",
};
workbook_set_properties(workbook, &properties);
}
lxw_format* ExcelFile::efectiveStyle(const std::string& style)
{
lxw_format* efectiveStyle = NULL;
if (style != "") {
std::string suffix = row % 2 ? "_odd" : "_even";
try {
efectiveStyle = styles.at(style + suffix);
}
catch (const std::out_of_range& oor) {
try {
efectiveStyle = styles.at(style);
}
catch (const std::out_of_range& oor) {
throw std::invalid_argument("Style " + style + " not found");
}
}
}
return efectiveStyle;
}
void ExcelFile::writeString(int row, int col, const std::string& text, const std::string& style)
{
worksheet_write_string(worksheet, row, col, text.c_str(), efectiveStyle(style));
}
void ExcelFile::writeInt(int row, int col, const int number, const std::string& style)
{
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
}
void ExcelFile::writeDouble(int row, int col, const double number, const std::string& style)
{
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
}
void ExcelFile::addColor(lxw_format* style, bool odd)
{
uint32_t efectiveColor = odd ? colorEven : colorOdd;
format_set_bg_color(style, lxw_color_t(efectiveColor));
}
void ExcelFile::createStyle(const std::string& name, lxw_format* style, bool odd)
{
addColor(style, odd);
if (name == "textCentered") {
format_set_align(style, LXW_ALIGN_CENTER);
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "text") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "bodyHeader") {
format_set_bold(style);
format_set_font_size(style, normalSize);
format_set_align(style, LXW_ALIGN_CENTER);
format_set_align(style, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(style, LXW_BORDER_THIN);
format_set_bg_color(style, lxw_color_t(colorTitle));
} else if (name == "result") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
format_set_num_format(style, "0.0000000");
} else if (name == "time") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
format_set_num_format(style, "#,##0.000000");
} else if (name == "ints") {
format_set_font_size(style, normalSize);
format_set_num_format(style, "###,##0");
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "floats") {
format_set_border(style, LXW_BORDER_THIN);
format_set_font_size(style, normalSize);
format_set_num_format(style, "#,##0.00");
}
}
void ExcelFile::createFormats()
{
auto styleNames = { "text", "textCentered", "bodyHeader", "result", "time", "ints", "floats" };
lxw_format* style;
for (std::string name : styleNames) {
lxw_format* style = workbook_add_format(workbook);
style = workbook_add_format(workbook);
createStyle(name, style, true);
styles[name + "_odd"] = style;
style = workbook_add_format(workbook);
createStyle(name, style, false);
styles[name + "_even"] = style;
}
// Header 1st line
lxw_format* headerFirst = workbook_add_format(workbook);
format_set_bold(headerFirst);
format_set_font_size(headerFirst, 18);
format_set_align(headerFirst, LXW_ALIGN_CENTER);
format_set_align(headerFirst, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(headerFirst, LXW_BORDER_THIN);
format_set_bg_color(headerFirst, lxw_color_t(colorTitle));
// Header rest
lxw_format* headerRest = workbook_add_format(workbook);
format_set_bold(headerRest);
format_set_align(headerRest, LXW_ALIGN_CENTER);
format_set_font_size(headerRest, 16);
format_set_align(headerRest, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(headerRest, LXW_BORDER_THIN);
format_set_bg_color(headerRest, lxw_color_t(colorOdd));
// Header small
lxw_format* headerSmall = workbook_add_format(workbook);
format_set_bold(headerSmall);
format_set_align(headerSmall, LXW_ALIGN_LEFT);
format_set_font_size(headerSmall, 12);
format_set_border(headerSmall, LXW_BORDER_THIN);
format_set_align(headerSmall, LXW_ALIGN_VERTICAL_CENTER);
format_set_bg_color(headerSmall, lxw_color_t(colorOdd));
// Summary style
lxw_format* summaryStyle = workbook_add_format(workbook);
format_set_bold(summaryStyle);
format_set_font_size(summaryStyle, 16);
format_set_border(summaryStyle, LXW_BORDER_THIN);
format_set_align(summaryStyle, LXW_ALIGN_VERTICAL_CENTER);
styles["headerFirst"] = headerFirst;
styles["headerRest"] = headerRest;
styles["headerSmall"] = headerSmall;
styles["summaryStyle"] = summaryStyle;
}
}

43
src/Platform/ExcelFile.h Normal file
View File

@@ -0,0 +1,43 @@
#ifndef EXCELFILE_H
#define EXCELFILE_H
#include <locale>
#include <string>
#include <map>
#include "xlsxwriter.h"
namespace platform {
struct separated : std::numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
std::string do_grouping() const { return "\03"; }
};
class ExcelFile {
public:
ExcelFile();
ExcelFile(lxw_workbook* workbook);
ExcelFile(lxw_workbook* workbook, lxw_worksheet* worksheet);
lxw_workbook* getWorkbook();
protected:
void setProperties(std::string title);
void writeString(int row, int col, const std::string& text, const std::string& style = "");
void writeInt(int row, int col, const int number, const std::string& style = "");
void writeDouble(int row, int col, const double number, const std::string& style = "");
void createFormats();
void createStyle(const std::string& name, lxw_format* style, bool odd);
void addColor(lxw_format* style, bool odd);
lxw_format* efectiveStyle(const std::string& name);
lxw_workbook* workbook;
lxw_worksheet* worksheet;
std::map<std::string, lxw_format*> styles;
int row;
int normalSize; //font size for report body
uint32_t colorTitle;
uint32_t colorOdd;
uint32_t colorEven;
private:
void setDefault();
};
}
#endif // !EXCELFILE_H

226
src/Platform/Experiment.cc Normal file
View File

@@ -0,0 +1,226 @@
#include <fstream>
#include "Experiment.h"
#include "Datasets.h"
#include "Models.h"
#include "ReportConsole.h"
#include "Paths.h"
namespace platform {
using json = nlohmann::json;
std::string get_date()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%Y-%m-%d");
return oss.str();
}
std::string get_time()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%H:%M:%S");
return oss.str();
}
std::string Experiment::get_file_name()
{
std::string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
return result;
}
json Experiment::build_json()
{
json result;
result["title"] = title;
result["date"] = get_date();
result["time"] = get_time();
result["model"] = model;
result["version"] = model_version;
result["platform"] = platform;
result["score_name"] = score_name;
result["language"] = language;
result["language_version"] = language_version;
result["discretized"] = discretized;
result["stratified"] = stratified;
result["folds"] = nfolds;
result["seeds"] = randomSeeds;
result["duration"] = duration;
result["results"] = json::array();
for (const auto& r : results) {
json j;
j["dataset"] = r.getDataset();
j["hyperparameters"] = r.getHyperparameters();
j["samples"] = r.getSamples();
j["features"] = r.getFeatures();
j["classes"] = r.getClasses();
j["score_train"] = r.getScoreTrain();
j["score_test"] = r.getScoreTest();
j["score"] = r.getScoreTest();
j["score_std"] = r.getScoreTestStd();
j["score_train_std"] = r.getScoreTrainStd();
j["score_test_std"] = r.getScoreTestStd();
j["train_time"] = r.getTrainTime();
j["train_time_std"] = r.getTrainTimeStd();
j["test_time"] = r.getTestTime();
j["test_time_std"] = r.getTestTimeStd();
j["time"] = r.getTestTime() + r.getTrainTime();
j["time_std"] = r.getTestTimeStd() + r.getTrainTimeStd();
j["scores_train"] = r.getScoresTrain();
j["scores_test"] = r.getScoresTest();
j["times_train"] = r.getTimesTrain();
j["times_test"] = r.getTimesTest();
j["nodes"] = r.getNodes();
j["leaves"] = r.getLeaves();
j["depth"] = r.getDepth();
result["results"].push_back(j);
}
return result;
}
void Experiment::save(const std::string& path)
{
json data = build_json();
ofstream file(path + "/" + get_file_name());
file << data;
file.close();
}
void Experiment::report()
{
json data = build_json();
ReportConsole report(data);
report.show();
}
void Experiment::show()
{
json data = build_json();
std::cout << data.dump(4) << std::endl;
}
void Experiment::go(std::vector<std::string> filesToProcess, bool quiet)
{
std::cout << "*** Starting experiment: " << title << " ***" << std::endl;
for (auto fileName : filesToProcess) {
std::cout << "- " << setw(20) << left << fileName << " " << right << flush;
cross_validation(fileName, quiet);
std::cout << std::endl;
}
}
std::string getColor(bayesnet::status_t status)
{
switch (status) {
case bayesnet::NORMAL:
return Colors::GREEN();
case bayesnet::WARNING:
return Colors::YELLOW();
case bayesnet::ERROR:
return Colors::RED();
default:
return Colors::RESET();
}
}
void showProgress(int fold, const std::string& color, const std::string& phase)
{
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
}
void Experiment::cross_validation(const std::string& fileName, bool quiet)
{
auto datasets = Datasets(discretized, Paths::datasets());
// Get dataset
auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName);
auto features = datasets.getFeatures(fileName);
auto samples = datasets.getNSamples(fileName);
auto className = datasets.getClassName(fileName);
if (!quiet) {
std::cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
}
// Prepare Result
auto result = Result();
auto [values, counts] = at::_unique(y);
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
result.setHyperparameters(hyperparameters.get(fileName));
// Initialize results std::vectors
int nResults = nfolds * static_cast<int>(randomSeeds.size());
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
auto accuracy_train = torch::zeros({ nResults }, torch::kFloat64);
auto train_time = torch::zeros({ nResults }, torch::kFloat64);
auto test_time = torch::zeros({ nResults }, torch::kFloat64);
auto nodes = torch::zeros({ nResults }, torch::kFloat64);
auto edges = torch::zeros({ nResults }, torch::kFloat64);
auto num_states = torch::zeros({ nResults }, torch::kFloat64);
Timer train_timer, test_timer;
int item = 0;
for (auto seed : randomSeeds) {
if (!quiet)
std::cout << "(" << seed << ") doing Fold: " << flush;
folding::Fold* fold;
if (stratified)
fold = new folding::StratifiedKFold(nfolds, y, seed);
else
fold = new folding::KFold(nfolds, y.size(0), seed);
for (int nfold = 0; nfold < nfolds; nfold++) {
auto clf = Models::instance()->create(model);
setModelVersion(clf->getVersion());
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, fileName);
clf->setHyperparameters(hyperparameters.get(fileName));
// Split train - test dataset
train_timer.start();
auto [train, test] = fold->getFold(nfold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "a");
// Train model
clf->fit(X_train, y_train, features, className, states);
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
nodes[item] = clf->getNumberOfNodes();
edges[item] = clf->getNumberOfEdges();
num_states[item] = clf->getNumberOfStates();
train_time[item] = train_timer.getDuration();
// Score train
auto accuracy_train_value = clf->score(X_train, y_train);
// Test model
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
test_timer.start();
auto accuracy_test_value = clf->score(X_test, y_test);
test_time[item] = test_timer.getDuration();
accuracy_train[item] = accuracy_train_value;
accuracy_test[item] = accuracy_test_value;
if (!quiet)
std::cout << "\b\b\b, " << flush;
// Store results and times in std::vector
result.addScoreTrain(accuracy_train_value);
result.addScoreTest(accuracy_test_value);
result.addTimeTrain(train_time[item].item<double>());
result.addTimeTest(test_time[item].item<double>());
item++;
}
if (!quiet)
std::cout << "end. " << flush;
delete fold;
}
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
result.setTestTimeStd(torch::std(test_time).item<double>()).setTrainTimeStd(torch::std(train_time).item<double>());
result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>());
result.setDataset(fileName);
addResult(result);
}
}

103
src/Platform/Experiment.h Normal file
View File

@@ -0,0 +1,103 @@
#ifndef EXPERIMENT_H
#define EXPERIMENT_H
#include <torch/torch.h>
#include <nlohmann/json.hpp>
#include <string>
#include "folding.hpp"
#include "BaseClassifier.h"
#include "HyperParameters.h"
#include "TAN.h"
#include "KDB.h"
#include "AODE.h"
#include "Timer.h"
namespace platform {
using json = nlohmann::json;
class Result {
private:
std::string dataset, model_version;
json hyperparameters;
int samples{ 0 }, features{ 0 }, classes{ 0 };
double score_train{ 0 }, score_test{ 0 }, score_train_std{ 0 }, score_test_std{ 0 }, train_time{ 0 }, train_time_std{ 0 }, test_time{ 0 }, test_time_std{ 0 };
float nodes{ 0 }, leaves{ 0 }, depth{ 0 };
std::vector<double> scores_train, scores_test, times_train, times_test;
public:
Result() = default;
Result& setDataset(const std::string& dataset) { this->dataset = dataset; return *this; }
Result& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
Result& setSamples(int samples) { this->samples = samples; return *this; }
Result& setFeatures(int features) { this->features = features; return *this; }
Result& setClasses(int classes) { this->classes = classes; return *this; }
Result& setScoreTrain(double score) { this->score_train = score; return *this; }
Result& setScoreTest(double score) { this->score_test = score; return *this; }
Result& setScoreTrainStd(double score_std) { this->score_train_std = score_std; return *this; }
Result& setScoreTestStd(double score_std) { this->score_test_std = score_std; return *this; }
Result& setTrainTime(double train_time) { this->train_time = train_time; return *this; }
Result& setTrainTimeStd(double train_time_std) { this->train_time_std = train_time_std; return *this; }
Result& setTestTime(double test_time) { this->test_time = test_time; return *this; }
Result& setTestTimeStd(double test_time_std) { this->test_time_std = test_time_std; return *this; }
Result& setNodes(float nodes) { this->nodes = nodes; return *this; }
Result& setLeaves(float leaves) { this->leaves = leaves; return *this; }
Result& setDepth(float depth) { this->depth = depth; return *this; }
Result& addScoreTrain(double score) { scores_train.push_back(score); return *this; }
Result& addScoreTest(double score) { scores_test.push_back(score); return *this; }
Result& addTimeTrain(double time) { times_train.push_back(time); return *this; }
Result& addTimeTest(double time) { times_test.push_back(time); return *this; }
const float get_score_train() const { return score_train; }
float get_score_test() { return score_test; }
const std::string& getDataset() const { return dataset; }
const json& getHyperparameters() const { return hyperparameters; }
const int getSamples() const { return samples; }
const int getFeatures() const { return features; }
const int getClasses() const { return classes; }
const double getScoreTrain() const { return score_train; }
const double getScoreTest() const { return score_test; }
const double getScoreTrainStd() const { return score_train_std; }
const double getScoreTestStd() const { return score_test_std; }
const double getTrainTime() const { return train_time; }
const double getTrainTimeStd() const { return train_time_std; }
const double getTestTime() const { return test_time; }
const double getTestTimeStd() const { return test_time_std; }
const float getNodes() const { return nodes; }
const float getLeaves() const { return leaves; }
const float getDepth() const { return depth; }
const std::vector<double>& getScoresTrain() const { return scores_train; }
const std::vector<double>& getScoresTest() const { return scores_test; }
const std::vector<double>& getTimesTrain() const { return times_train; }
const std::vector<double>& getTimesTest() const { return times_test; }
};
class Experiment {
public:
Experiment() = default;
Experiment& setTitle(const std::string& title) { this->title = title; return *this; }
Experiment& setModel(const std::string& model) { this->model = model; return *this; }
Experiment& setPlatform(const std::string& platform) { this->platform = platform; return *this; }
Experiment& setScoreName(const std::string& score_name) { this->score_name = score_name; return *this; }
Experiment& setModelVersion(const std::string& model_version) { this->model_version = model_version; return *this; }
Experiment& setLanguage(const std::string& language) { this->language = language; return *this; }
Experiment& setLanguageVersion(const std::string& language_version) { this->language_version = language_version; return *this; }
Experiment& setDiscretized(bool discretized) { this->discretized = discretized; return *this; }
Experiment& setStratified(bool stratified) { this->stratified = stratified; return *this; }
Experiment& setNFolds(int nfolds) { this->nfolds = nfolds; return *this; }
Experiment& addResult(Result result) { results.push_back(result); return *this; }
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
Experiment& setHyperparameters(const HyperParameters& hyperparameters_) { this->hyperparameters = hyperparameters_; return *this; }
std::string get_file_name();
void save(const std::string& path);
void cross_validation(const std::string& fileName, bool quiet);
void go(std::vector<std::string> filesToProcess, bool quiet);
void show();
void report();
private:
std::string title, model, platform, score_name, model_version, language_version, language;
bool discretized{ false }, stratified{ false };
std::vector<Result> results;
std::vector<int> randomSeeds;
HyperParameters hyperparameters;
int nfolds{ 0 };
float duration{ 0 };
json build_json();
};
}
#endif

75
src/Platform/GridData.cc Normal file
View File

@@ -0,0 +1,75 @@
#include "GridData.h"
#include <fstream>
namespace platform {
GridData::GridData(const std::string& fileName)
{
json grid_file;
std::ifstream resultData(fileName);
if (resultData.is_open()) {
grid_file = json::parse(resultData);
} else {
throw std::invalid_argument("Unable to open input file. [" + fileName + "]");
}
for (const auto& item : grid_file.items()) {
auto key = item.key();
auto value = item.value();
grid[key] = value;
}
}
int GridData::computeNumCombinations(const json& line)
{
int numCombinations = 1;
for (const auto& item : line.items()) {
numCombinations *= item.value().size();
}
return numCombinations;
}
int GridData::getNumCombinations(const std::string& dataset)
{
int numCombinations = 0;
auto selected = decide_dataset(dataset);
for (const auto& line : grid.at(selected)) {
numCombinations += computeNumCombinations(line);
}
return numCombinations;
}
json GridData::generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination)
{
if (index == last) {
// If we reached the end of input, store the current combination
output.push_back(currentCombination);
return currentCombination;
}
const auto& key = index.key();
const auto& values = index.value();
for (const auto& value : values) {
auto combination = currentCombination;
combination[key] = value;
json::iterator nextIndex = index;
generateCombinations(++nextIndex, last, output, combination);
}
return currentCombination;
}
std::vector<json> GridData::getGrid(const std::string& dataset)
{
auto selected = decide_dataset(dataset);
auto result = std::vector<json>();
for (json line : grid.at(selected)) {
generateCombinations(line.begin(), line.end(), result, json({}));
}
return result;
}
json& GridData::getInputGrid(const std::string& dataset)
{
auto selected = decide_dataset(dataset);
return grid.at(selected);
}
std::string GridData::decide_dataset(const std::string& dataset)
{
if (grid.find(dataset) != grid.end())
return dataset;
return ALL_DATASETS;
}
} /* namespace platform */

26
src/Platform/GridData.h Normal file
View File

@@ -0,0 +1,26 @@
#ifndef GRIDDATA_H
#define GRIDDATA_H
#include <string>
#include <vector>
#include <map>
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
const std::string ALL_DATASETS = "all";
class GridData {
public:
explicit GridData(const std::string& fileName);
~GridData() = default;
std::vector<json> getGrid(const std::string& dataset = ALL_DATASETS);
int getNumCombinations(const std::string& dataset = ALL_DATASETS);
json& getInputGrid(const std::string& dataset = ALL_DATASETS);
std::map<std::string, json>& getGridFile() { return grid; }
private:
std::string decide_dataset(const std::string& dataset);
json generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination);
int computeNumCombinations(const json& line);
std::map<std::string, json> grid;
};
} /* namespace platform */
#endif /* GRIDDATA_H */

441
src/Platform/GridSearch.cc Normal file
View File

@@ -0,0 +1,441 @@
#include <iostream>
#include <cstddef>
#include <torch/torch.h>
#include "GridSearch.h"
#include "Models.h"
#include "Paths.h"
#include "folding.hpp"
#include "Colors.h"
namespace platform {
std::string get_date()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%Y-%m-%d");
return oss.str();
}
std::string get_time()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%H:%M:%S");
return oss.str();
}
std::string get_color_rank(int rank)
{
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
return *(colors.begin() + rank % colors.size());
}
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
{
}
json GridSearch::loadResults()
{
std::ifstream file(Paths::grid_output(config.model));
if (file.is_open()) {
return json::parse(file);
}
return json();
}
std::vector<std::string> GridSearch::filterDatasets(Datasets& datasets) const
{
// Load datasets
auto datasets_names = datasets.getNames();
if (config.continue_from != NO_CONTINUE()) {
// Continue previous execution:
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
}
// Remove datasets already processed
std::vector<string>::iterator it = datasets_names.begin();
while (it != datasets_names.end()) {
if (*it != config.continue_from) {
it = datasets_names.erase(it);
} else {
if (config.only)
++it;
else
break;
}
}
}
// Exclude datasets
for (const auto& name : config.excluded) {
auto dataset = name.get<std::string>();
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
if (it == datasets_names.end()) {
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
}
datasets_names.erase(it);
}
return datasets_names;
}
json GridSearch::build_tasks_mpi(int rank)
{
auto tasks = json::array();
auto grid = GridData(Paths::grid_input(config.model));
auto datasets = Datasets(false, Paths::datasets());
auto all_datasets = datasets.getNames();
auto datasets_names = filterDatasets(datasets);
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
auto dataset = datasets_names[idx_dataset];
for (const auto& seed : config.seeds) {
auto combinations = grid.getGrid(dataset);
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
json task = {
{ "dataset", dataset },
{ "idx_dataset", idx_dataset},
{ "seed", seed },
{ "fold", n_fold},
};
tasks.push_back(task);
}
}
}
// Shuffle the array so heavy datasets are spread across the workers
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
std::shuffle(tasks.begin(), tasks.end(), g);
std::cout << get_color_rank(rank) << "* Number of tasks: " << tasks.size() << std::endl;
std::cout << "|";
for (int i = 0; i < tasks.size(); ++i) {
std::cout << (i + 1) % 10;
}
std::cout << "|" << std::endl << "|" << std::flush;
return tasks;
}
void process_task_mpi_consumer(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
{
// initialize
Timer timer;
timer.start();
json task = tasks[n_task];
auto model = config.model;
auto grid = GridData(Paths::grid_input(model));
auto dataset = task["dataset"].get<std::string>();
auto idx_dataset = task["idx_dataset"].get<int>();
auto seed = task["seed"].get<int>();
auto n_fold = task["fold"].get<int>();
bool stratified = config.stratified;
// Generate the hyperparamters combinations
auto combinations = grid.getGrid(dataset);
auto [X, y] = datasets.getTensors(dataset);
auto states = datasets.getStates(dataset);
auto features = datasets.getFeatures(dataset);
auto className = datasets.getClassName(dataset);
//
// Start working on task
//
folding::Fold* fold;
if (stratified)
fold = new folding::StratifiedKFold(config.n_folds, y, seed);
else
fold = new folding::KFold(config.n_folds, y.size(0), seed);
auto [train, test] = fold->getFold(n_fold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
double best_fold_score = 0.0;
int best_idx_combination = -1;
json best_fold_hyper;
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
auto hyperparam_line = combinations[idx_combination];
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
folding::Fold* nested_fold;
if (config.stratified)
nested_fold = new folding::StratifiedKFold(config.nested, y_train, seed);
else
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
double score = 0.0;
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
// Nested level fold
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
auto train_nested_t = torch::tensor(train_nested);
auto test_nested_t = torch::tensor(test_nested);
auto X_nested_train = X_train.index({ "...", train_nested_t });
auto y_nested_train = y_train.index({ train_nested_t });
auto X_nested_test = X_train.index({ "...", test_nested_t });
auto y_nested_test = y_train.index({ test_nested_t });
// Build Classifier with selected hyperparameters
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(hyperparameters.get(dataset));
// Train model
clf->fit(X_nested_train, y_nested_train, features, className, states);
// Test model
score += clf->score(X_nested_test, y_nested_test);
}
delete nested_fold;
score /= config.nested;
if (score > best_fold_score) {
best_fold_score = score;
best_idx_combination = idx_combination;
best_fold_hyper = hyperparam_line;
}
}
delete fold;
// Build Classifier with the best hyperparameters to obtain the best score
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(best_fold_hyper);
clf->fit(X_train, y_train, features, className, states);
best_fold_score = clf->score(X_test, y_test);
// Return the result
result->idx_dataset = task["idx_dataset"].get<int>();
result->idx_combination = best_idx_combination;
result->score = best_fold_score;
result->n_fold = n_fold;
result->time = timer.getDuration();
// Update progress bar
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
}
json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
{
json json_result = {
{ "score", result.score },
{ "combination", result.idx_combination },
{ "fold", result.n_fold },
{ "time", result.time },
{ "dataset", result.idx_dataset }
};
auto name = names[result.idx_dataset];
if (!results.contains(name)) {
results[name] = json::array();
}
results[name].push_back(json_result);
return results;
}
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
json results;
int num_tasks = tasks.size();
//
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
//
for (int i = 0; i < num_tasks; ++i) {
MPI_Status status;
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) {
//Store result
store_result(names, result, results);
}
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
}
//
// 2a.2 Producer will send the end message to all the consumers
//
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
MPI_Status status;
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) {
//Store result
store_result(names, result, results);
}
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
}
return results;
}
void select_best_results_folds(json& results, json& all_results, std::string& model)
{
Timer timer;
auto grid = GridData(Paths::grid_input(model));
//
// Select the best result of the computed outer folds
//
for (const auto& result : all_results.items()) {
// each result has the results of all the outer folds as each one were a different task
double best_score = 0.0;
json best;
for (const auto& result_fold : result.value()) {
double score = result_fold["score"].get<double>();
if (score > best_score) {
best_score = score;
best = result_fold;
}
}
auto dataset = result.key();
auto combinations = grid.getGrid(dataset);
json json_best = {
{ "score", best_score },
{ "hyperparameters", combinations[best["combination"].get<int>()] },
{ "date", get_date() + " " + get_time() },
{ "grid", grid.getInputGrid(dataset) },
{ "duration", timer.translate2String(best["time"].get<double>()) }
};
results[dataset] = json_best;
}
}
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
//
// 2b.1 Consumers announce to the producer that they are ready to receive a task
//
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
int task;
while (true) {
MPI_Status status;
//
// 2b.2 Consumers receive the task from the producer and process it
//
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_END) {
break;
}
process_task_mpi_consumer(config, config_mpi, tasks, task, datasets, &result);
//
// 2b.3 Consumers send the result to the producer
//
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
}
}
void GridSearch::go(struct ConfigMPI& config_mpi)
{
/*
* Each task is a json object with the following structure:
* {
* "dataset": "dataset_name",
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
* // this index is relative to the used datasets in the actual run not to the whole datasets
* "seed": # of seed to use,
* "Fold": # of fold to process
* }
*
* The overall process consists in these steps:
* 0. Create the MPI result type & tasks
* 0.1 Create the MPI result type
* 0.2 Manager creates the tasks
* 1. Manager will broadcast the tasks to all the processes
* 1.1 Broadcast the number of tasks
* 1.2 Broadcast the length of the following string
* 1.2 Broadcast the tasks as a char* string
* 2a. Producer delivers the tasks to the consumers
* 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
* 2a.2 Producer will send the end message to all the consumers
* 2b. Consumers process the tasks and send the results to the producer
* 2b.1 Consumers announce to the producer that they are ready to receive a task
* 2b.2 Consumers receive the task from the producer and process it
* 2b.3 Consumers send the result to the producer
* 3. Manager select the bests sccores for each dataset
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
* 3.2 Save the results
*/
//
// 0.1 Create the MPI result type
//
Task_Result result;
int tasks_size;
MPI_Datatype MPI_Result;
MPI_Datatype type[5] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE };
int blocklen[5] = { 1, 1, 1, 1, 1 };
MPI_Aint disp[5];
disp[0] = offsetof(Task_Result, idx_dataset);
disp[1] = offsetof(Task_Result, idx_combination);
disp[2] = offsetof(Task_Result, n_fold);
disp[3] = offsetof(Task_Result, score);
disp[4] = offsetof(Task_Result, time);
MPI_Type_create_struct(5, blocklen, disp, type, &MPI_Result);
MPI_Type_commit(&MPI_Result);
//
// 0.2 Manager creates the tasks
//
char* msg;
json tasks;
if (config_mpi.rank == config_mpi.manager) {
timer.start();
tasks = build_tasks_mpi(config_mpi.rank);
auto tasks_str = tasks.dump();
tasks_size = tasks_str.size();
msg = new char[tasks_size + 1];
strcpy(msg, tasks_str.c_str());
}
//
// 1. Manager will broadcast the tasks to all the processes
//
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
if (config_mpi.rank != config_mpi.manager) {
msg = new char[tasks_size + 1];
}
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
tasks = json::parse(msg);
delete[] msg;
auto datasets = Datasets(config.discretize, Paths::datasets());
if (config_mpi.rank == config_mpi.manager) {
//
// 2a. Producer delivers the tasks to the consumers
//
auto datasets_names = filterDatasets(datasets);
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
std::cout << get_color_rank(config_mpi.rank) << "|" << std::endl;
//
// 3. Manager select the bests sccores for each dataset
//
auto results = initializeResults();
select_best_results_folds(results, all_results, config.model);
//
// 3.2 Save the results
//
save(results);
} else {
//
// 2b. Consumers process the tasks and send the results to the producer
//
consumer(datasets, tasks, config, config_mpi, MPI_Result);
}
}
json GridSearch::initializeResults()
{
// Load previous results if continue is set
json results;
if (config.continue_from != NO_CONTINUE()) {
if (!config.quiet)
std::cout << "* Loading previous results" << std::endl;
try {
std::ifstream file(Paths::grid_output(config.model));
if (file.is_open()) {
results = json::parse(file);
results = results["results"];
}
}
catch (const std::exception& e) {
std::cerr << "* There were no previous results" << std::endl;
std::cerr << "* Initizalizing new results" << std::endl;
results = json();
}
}
return results;
}
void GridSearch::save(json& results)
{
std::ofstream file(Paths::grid_output(config.model));
json output = {
{ "model", config.model },
{ "score", config.score },
{ "discretize", config.discretize },
{ "stratified", config.stratified },
{ "n_folds", config.n_folds },
{ "seeds", config.seeds },
{ "date", get_date() + " " + get_time()},
{ "nested", config.nested},
{ "platform", config.platform },
{ "duration", timer.getDurationString(true)},
{ "results", results }
};
file << output.dump(4);
}
} /* namespace platform */

60
src/Platform/GridSearch.h Normal file
View File

@@ -0,0 +1,60 @@
#ifndef GRIDSEARCH_H
#define GRIDSEARCH_H
#include <string>
#include <map>
#include <mpi.h>
#include <nlohmann/json.hpp>
#include "Datasets.h"
#include "HyperParameters.h"
#include "GridData.h"
#include "Timer.h"
namespace platform {
using json = nlohmann::json;
struct ConfigGrid {
std::string model;
std::string score;
std::string continue_from;
std::string platform;
bool quiet;
bool only; // used with continue_from to only compute that dataset
bool discretize;
bool stratified;
int nested;
int n_folds;
json excluded;
std::vector<int> seeds;
};
struct ConfigMPI {
int rank;
int n_procs;
int manager;
};
typedef struct {
uint idx_dataset;
uint idx_combination;
int n_fold;
double score;
double time;
} Task_Result;
const int TAG_QUERY = 1;
const int TAG_RESULT = 2;
const int TAG_TASK = 3;
const int TAG_END = 4;
class GridSearch {
public:
explicit GridSearch(struct ConfigGrid& config);
void go(struct ConfigMPI& config_mpi);
~GridSearch() = default;
json loadResults();
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
private:
void save(json& results);
json initializeResults();
std::vector<std::string> filterDatasets(Datasets& datasets) const;
struct ConfigGrid config;
json build_tasks_mpi(int rank);
Timer timer; // used to measure the time of the whole process
};
} /* namespace platform */
#endif /* GRIDSEARCH_H */

View File

@@ -0,0 +1,55 @@
#include "HyperParameters.h"
#include <fstream>
#include <sstream>
#include <iostream>
namespace platform {
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_)
{
// Initialize all datasets with the given hyperparameters
for (const auto& item : datasets) {
hyperparameters[item] = hyperparameters_;
}
}
// https://www.techiedelight.com/implode-a-vector-of-strings-into-a-comma-separated-string-in-cpp/
std::string join(std::vector<std::string> const& strings, std::string delim)
{
std::stringstream ss;
std::copy(strings.begin(), strings.end(),
std::ostream_iterator<std::string>(ss, delim.c_str()));
return ss.str();
}
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file)
{
// Check if file exists
std::ifstream file(hyperparameters_file);
if (!file.is_open()) {
throw std::runtime_error("File " + hyperparameters_file + " not found");
}
// Check if file is a json
json input_hyperparameters = json::parse(file);
// Check if hyperparameters are valid
for (const auto& dataset : datasets) {
if (!input_hyperparameters.contains(dataset)) {
std::cerr << "*Warning: Dataset " << dataset << " not found in hyperparameters file" << " assuming default hyperparameters" << std::endl;
hyperparameters[dataset] = json({});
continue;
}
hyperparameters[dataset] = input_hyperparameters[dataset]["hyperparameters"].get<json>();
}
}
void HyperParameters::check(const std::vector<std::string>& valid, const std::string& fileName)
{
json result = hyperparameters.at(fileName);
for (const auto& item : result.items()) {
if (find(valid.begin(), valid.end(), item.key()) == valid.end()) {
throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid. Passed Hyperparameters are: "
+ result.dump(4) + "\n Valid hyperparameters are: {" + join(valid, ",") + "}");
}
}
}
json HyperParameters::get(const std::string& fileName)
{
return hyperparameters.at(fileName);
}
} /* namespace platform */

View File

@@ -0,0 +1,23 @@
#ifndef HYPERPARAMETERS_H
#define HYPERPARAMETERS_H
#include <string>
#include <map>
#include <vector>
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
class HyperParameters {
public:
HyperParameters() = default;
explicit HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_);
explicit HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file);
~HyperParameters() = default;
bool notEmpty(const std::string& key) const { return !hyperparameters.at(key).empty(); }
void check(const std::vector<std::string>& valid, const std::string& fileName);
json get(const std::string& fileName);
private:
std::map<std::string, json> hyperparameters;
};
} /* namespace platform */
#endif /* HYPERPARAMETERS_H */

View File

@@ -0,0 +1,213 @@
#include "ManageResults.h"
#include "CommandParser.h"
#include <filesystem>
#include <tuple>
#include "Colors.h"
#include "CLocale.h"
#include "Paths.h"
#include "ReportConsole.h"
#include "ReportExcel.h"
namespace platform {
ManageResults::ManageResults(int numFiles, const std::string& model, const std::string& score, bool complete, bool partial, bool compare) :
numFiles{ numFiles }, complete{ complete }, partial{ partial }, compare{ compare }, results(Results(Paths::results(), model, score, complete, partial))
{
indexList = true;
openExcel = false;
workbook = NULL;
if (numFiles == 0) {
this->numFiles = results.size();
}
}
void ManageResults::doMenu()
{
if (results.empty()) {
std::cout << Colors::MAGENTA() << "No results found!" << Colors::RESET() << std::endl;
return;
}
results.sortDate();
list();
menu();
if (openExcel) {
workbook_close(workbook);
}
std::cout << Colors::RESET() << "Done!" << std::endl;
}
void ManageResults::list()
{
auto temp = ConfigLocale();
std::string suffix = numFiles != results.size() ? " of " + std::to_string(results.size()) : "";
std::stringstream oss;
oss << "Results on screen: " << numFiles << suffix;
std::cout << Colors::GREEN() << oss.str() << std::endl;
std::cout << std::string(oss.str().size(), '-') << std::endl;
if (complete) {
std::cout << Colors::MAGENTA() << "Only listing complete results" << std::endl;
}
if (partial) {
std::cout << Colors::MAGENTA() << "Only listing partial results" << std::endl;
}
auto i = 0;
int maxModel = results.maxModelSize();
std::cout << Colors::GREEN() << " # Date " << std::setw(maxModel) << std::left << "Model" << " Score Name Score C/P Duration Title" << std::endl;
std::cout << "=== ========== " << std::string(maxModel, '=') << " =========== =========== === ========= =============================================================" << std::endl;
bool odd = true;
for (auto& result : results) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
std::cout << result.to_string(maxModel) << std::endl;
if (i == numFiles) {
break;
}
odd = !odd;
}
}
bool ManageResults::confirmAction(const std::string& intent, const std::string& fileName) const
{
std::string color;
if (intent == "delete") {
color = Colors::RED();
} else {
color = Colors::YELLOW();
}
std::string line;
bool finished = false;
while (!finished) {
std::cout << color << "Really want to " << intent << " " << fileName << "? (y/n): ";
getline(std::cin, line);
finished = line.size() == 1 && (tolower(line[0]) == 'y' || tolower(line[0] == 'n'));
}
if (tolower(line[0]) == 'y') {
return true;
}
std::cout << "Not done!" << std::endl;
return false;
}
void ManageResults::report(const int index, const bool excelReport)
{
std::cout << Colors::YELLOW() << "Reporting " << results.at(index).getFilename() << std::endl;
auto data = results.at(index).load();
if (excelReport) {
ReportExcel reporter(data, compare, workbook);
reporter.show();
openExcel = true;
workbook = reporter.getWorkbook();
std::cout << "Adding sheet to " << Paths::excel() + Paths::excelResults() << std::endl;
} else {
ReportConsole reporter(data, compare);
reporter.show();
}
}
void ManageResults::showIndex(const int index, const int idx)
{
// Show a dataset result inside a report
auto data = results.at(index).load();
std::cout << Colors::YELLOW() << "Showing " << results.at(index).getFilename() << std::endl;
ReportConsole reporter(data, compare, idx);
reporter.show();
}
void ManageResults::sortList()
{
std::cout << Colors::YELLOW() << "Choose sorting field (date='d', score='s', duration='u', model='m'): ";
std::string line;
char option;
getline(std::cin, line);
if (line.size() == 0)
return;
if (line.size() > 1) {
std::cout << "Invalid option" << std::endl;
return;
}
option = line[0];
switch (option) {
case 'd':
results.sortDate();
break;
case 's':
results.sortScore();
break;
case 'u':
results.sortDuration();
break;
case 'm':
results.sortModel();
break;
default:
std::cout << "Invalid option" << std::endl;
}
}
void ManageResults::menu()
{
char option;
int index, subIndex;
bool finished = false;
std::string filename;
// tuple<Option, digit, requires value>
std::vector<std::tuple<std::string, char, bool>> mainOptions = {
{"quit", 'q', false},
{"list", 'l', false},
{"delete", 'd', true},
{"hide", 'h', true},
{"sort", 's', false},
{"report", 'r', true},
{"excel", 'e', true}
};
std::vector<std::tuple<std::string, char, bool>> listOptions = {
{"report", 'r', true},
{"list", 'l', false},
{"quit", 'q', false}
};
auto parser = CommandParser();
while (!finished) {
if (indexList) {
std::tie(option, index) = parser.parse(Colors::GREEN(), mainOptions, 'r', numFiles - 1);
} else {
std::tie(option, subIndex) = parser.parse(Colors::MAGENTA(), listOptions, 'r', results.at(index).load()["results"].size() - 1);
}
switch (option) {
case 'q':
finished = true;
break;
case 'l':
list();
indexList = true;
break;
case 'd':
filename = results.at(index).getFilename();
if (!confirmAction("delete", filename))
break;
std::cout << "Deleting " << filename << std::endl;
results.deleteResult(index);
std::cout << "File: " + filename + " deleted!" << std::endl;
list();
break;
case 'h':
filename = results.at(index).getFilename();
if (!confirmAction("hide", filename))
break;
filename = results.at(index).getFilename();
std::cout << "Hiding " << filename << std::endl;
results.hideResult(index, Paths::hiddenResults());
std::cout << "File: " + filename + " hidden! (moved to " << Paths::hiddenResults() << ")" << std::endl;
list();
break;
case 's':
sortList();
list();
break;
case 'r':
if (indexList) {
report(index, false);
indexList = false;
} else {
showIndex(index, subIndex);
}
break;
case 'e':
report(index, true);
break;
}
}
}
} /* namespace platform */

View File

@@ -0,0 +1,31 @@
#ifndef MANAGE_RESULTS_H
#define MANAGE_RESULTS_H
#include "Results.h"
#include "xlsxwriter.h"
namespace platform {
class ManageResults {
public:
ManageResults(int numFiles, const std::string& model, const std::string& score, bool complete, bool partial, bool compare);
~ManageResults() = default;
void doMenu();
private:
void list();
bool confirmAction(const std::string& intent, const std::string& fileName) const;
void report(const int index, const bool excelReport);
void showIndex(const int index, const int idx);
void sortList();
void menu();
int numFiles;
bool indexList;
bool openExcel;
bool complete;
bool partial;
bool compare;
Results results;
lxw_workbook* workbook;
};
}
#endif /* MANAGE_RESULTS_H */

52
src/Platform/Models.cc Normal file
View File

@@ -0,0 +1,52 @@
#include "Models.h"
namespace platform {
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
Models* Models::factory = nullptr;;
Models* Models::instance()
{
//manages singleton
if (factory == nullptr)
factory = new Models();
return factory;
}
void Models::registerFactoryFunction(const std::string& name,
function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
{
// register the class factory function
functionRegistry[name] = classFactoryFunction;
}
shared_ptr<bayesnet::BaseClassifier> Models::create(const std::string& name)
{
bayesnet::BaseClassifier* instance = nullptr;
// find name in the registry and call factory method.
auto it = functionRegistry.find(name);
if (it != functionRegistry.end())
instance = it->second();
// wrap instance in a shared ptr and return
if (instance != nullptr)
return unique_ptr<bayesnet::BaseClassifier>(instance);
else
return nullptr;
}
std::vector<std::string> Models::getNames()
{
std::vector<std::string> names;
transform(functionRegistry.begin(), functionRegistry.end(), back_inserter(names),
[](const pair<std::string, function<bayesnet::BaseClassifier* (void)>>& pair) { return pair.first; });
return names;
}
std::string Models::tostring()
{
std::string result = "";
for (const auto& pair : functionRegistry) {
result += pair.first + ", ";
}
return "{" + result.substr(0, result.size() - 2) + "}";
}
Registrar::Registrar(const std::string& name, function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
{
// register the class factory function
Models::instance()->registerFactoryFunction(name, classFactoryFunction);
}
}

41
src/Platform/Models.h Normal file
View File

@@ -0,0 +1,41 @@
#ifndef MODELS_H
#define MODELS_H
#include <map>
#include "BaseClassifier.h"
#include "AODE.h"
#include "TAN.h"
#include "KDB.h"
#include "SPODE.h"
#include "TANLd.h"
#include "KDBLd.h"
#include "SPODELd.h"
#include "AODELd.h"
#include "BoostAODE.h"
#include "STree.h"
#include "ODTE.h"
#include "SVC.h"
#include "RandomForest.h"
namespace platform {
class Models {
private:
map<std::string, function<bayesnet::BaseClassifier* (void)>> functionRegistry;
static Models* factory; //singleton
Models() {};
public:
Models(Models&) = delete;
void operator=(const Models&) = delete;
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
static Models* instance();
shared_ptr<bayesnet::BaseClassifier> create(const std::string& name);
void registerFactoryFunction(const std::string& name,
function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
std::vector<string> getNames();
std::string tostring();
};
class Registrar {
public:
Registrar(const std::string& className, function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
};
}
#endif

39
src/Platform/Paths.h Normal file
View File

@@ -0,0 +1,39 @@
#ifndef PATHS_H
#define PATHS_H
#include <string>
#include <filesystem>
#include "DotEnv.h"
namespace platform {
class Paths {
public:
static std::string results() { return "results/"; }
static std::string hiddenResults() { return "hidden_results/"; }
static std::string excel() { return "excel/"; }
static std::string grid() { return "grid/"; }
static std::string datasets()
{
auto env = platform::DotEnv();
return env.get("source_data");
}
static void createPath(const std::string& path)
{
// Create directory if it does not exist
try {
std::filesystem::create_directory(path);
}
catch (std::exception& e) {
throw std::runtime_error("Could not create directory " + path);
}
}
static std::string excelResults() { return "some_results.xlsx"; }
static std::string grid_input(const std::string& model)
{
return grid() + "grid_" + model + "_input.json";
}
static std::string grid_output(const std::string& model)
{
return grid() + "grid_" + model + "_output.json";
}
};
}
#endif

113
src/Platform/ReportBase.cc Normal file
View File

@@ -0,0 +1,113 @@
#include <sstream>
#include <locale>
#include "Datasets.h"
#include "ReportBase.h"
#include "DotEnv.h"
namespace platform {
ReportBase::ReportBase(json data_, bool compare) : data(data_), compare(compare), margin(0.1)
{
std::stringstream oss;
oss << "Better than ZeroR + " << std::setprecision(1) << fixed << margin * 100 << "%";
meaning = {
{Symbols::equal_best, "Equal to best"},
{Symbols::better_best, "Better than best"},
{Symbols::cross, "Less than or equal to ZeroR"},
{Symbols::upward_arrow, oss.str()}
};
}
std::string ReportBase::fromVector(const std::string& key)
{
std::stringstream oss;
std::string sep = "";
oss << "[";
for (auto& item : data[key]) {
oss << sep << item.get<double>();
sep = ", ";
}
oss << "]";
return oss.str();
}
std::string ReportBase::fVector(const std::string& title, const json& data, const int width, const int precision)
{
std::stringstream oss;
std::string sep = "";
oss << title << "[";
for (const auto& item : data) {
oss << sep << fixed << setw(width) << std::setprecision(precision) << item.get<double>();
sep = ", ";
}
oss << "]";
return oss.str();
}
void ReportBase::show()
{
header();
body();
}
std::string ReportBase::compareResult(const std::string& dataset, double result)
{
std::string status = " ";
if (compare) {
double best = bestResult(dataset, data["model"].get<std::string>());
if (result == best) {
status = Symbols::equal_best;
} else if (result > best) {
status = Symbols::better_best;
}
} else {
if (data["score_name"].get<std::string>() == "accuracy") {
auto dt = Datasets(false, Paths::datasets());
dt.loadDataset(dataset);
auto numClasses = dt.getNClasses(dataset);
if (numClasses == 2) {
std::vector<int> distribution = dt.getClassesCounts(dataset);
double nSamples = dt.getNSamples(dataset);
std::vector<int>::iterator maxValue = max_element(distribution.begin(), distribution.end());
double mark = *maxValue / nSamples * (1 + margin);
if (mark > 1) {
mark = 0.9995;
}
status = result < mark ? Symbols::cross : result > mark ? Symbols::upward_arrow : "=";
}
}
}
if (status != " ") {
auto item = summary.find(status);
if (item != summary.end()) {
summary[status]++;
} else {
summary[status] = 1;
}
}
return status;
}
double ReportBase::bestResult(const std::string& dataset, const std::string& model)
{
double value = 0.0;
if (bestResults.size() == 0) {
// try to load the best results
std::string score = data["score_name"];
replace(score.begin(), score.end(), '_', '-');
std::string fileName = "best_results_" + score + "_" + model + ".json";
ifstream resultData(Paths::results() + "/" + fileName);
if (resultData.is_open()) {
bestResults = json::parse(resultData);
} else {
existBestFile = false;
}
}
try {
value = bestResults.at(dataset).at(0);
}
catch (exception) {
value = 1.0;
}
return value;
}
bool ReportBase::getExistBestFile()
{
return existBestFile;
}
}

36
src/Platform/ReportBase.h Normal file
View File

@@ -0,0 +1,36 @@
#ifndef REPORTBASE_H
#define REPORTBASE_H
#include <string>
#include <iostream>
#include "Paths.h"
#include "Symbols.h"
#include <nlohmann/json.hpp>
using json = nlohmann::json;
namespace platform {
class ReportBase {
public:
explicit ReportBase(json data_, bool compare);
virtual ~ReportBase() = default;
void show();
protected:
json data;
std::string fromVector(const std::string& key);
std::string fVector(const std::string& title, const json& data, const int width, const int precision);
bool getExistBestFile();
virtual void header() = 0;
virtual void body() = 0;
virtual void showSummary() = 0;
std::string compareResult(const std::string& dataset, double result);
std::map<std::string, int> summary;
double margin;
std::map<std::string, std::string> meaning;
bool compare;
private:
double bestResult(const std::string& dataset, const std::string& model);
json bestResults;
bool existBestFile = true;
};
};
#endif

View File

@@ -0,0 +1,114 @@
#include <iostream>
#include <sstream>
#include <locale>
#include "ReportConsole.h"
#include "BestScore.h"
#include "CLocale.h"
namespace platform {
std::string ReportConsole::headerLine(const std::string& text, int utf = 0)
{
int n = MAXL - text.length() - 3;
n = n < 0 ? 0 : n;
return "* " + text + std::string(n + utf, ' ') + "*\n";
}
void ReportConsole::header()
{
std::stringstream oss;
std::cout << Colors::MAGENTA() << std::string(MAXL, '*') << std::endl;
std::cout << headerLine(
"Report " + data["model"].get<std::string>() + " ver. " + data["version"].get<std::string>()
+ " with " + std::to_string(data["folds"].get<int>()) + " Folds cross validation and " + std::to_string(data["seeds"].size())
+ " random seeds. " + data["date"].get<std::string>() + " " + data["time"].get<std::string>()
);
std::cout << headerLine(data["title"].get<std::string>());
std::cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
oss << "Execution took " << std::setprecision(2) << std::fixed << data["duration"].get<float>()
<< " seconds, " << data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<std::string>();
std::cout << headerLine(oss.str());
std::cout << headerLine("Score is " + data["score_name"].get<std::string>());
std::cout << std::string(MAXL, '*') << std::endl;
std::cout << std::endl;
}
void ReportConsole::body()
{
auto tmp = ConfigLocale();
int maxHyper = 15;
int maxDataset = 7;
for (const auto& r : data["results"]) {
maxHyper = std::max(maxHyper, (int)r["hyperparameters"].dump().size());
maxDataset = std::max(maxDataset, (int)r["dataset"].get<std::string>().size());
}
std::cout << Colors::GREEN() << " # " << std::setw(maxDataset) << std::left << "Dataset" << " Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << std::endl;
std::cout << "=== " << std::string(maxDataset, '=') << " ====== ===== === ========= ========= ========= =============== =================== " << std::string(maxHyper, '=') << std::endl;
json lastResult;
double totalScore = 0.0;
bool odd = true;
int index = 0;
for (const auto& r : data["results"]) {
if (selectedIndex != -1 && index != selectedIndex) {
index++;
continue;
}
auto color = odd ? Colors::CYAN() : Colors::BLUE();
std::cout << color;
std::cout << std::setw(3) << std::right << index++ << " ";
std::cout << std::setw(maxDataset) << std::left << r["dataset"].get<std::string>() << " ";
std::cout << std::setw(6) << std::right << r["samples"].get<int>() << " ";
std::cout << std::setw(5) << std::right << r["features"].get<int>() << " ";
std::cout << std::setw(3) << std::right << r["classes"].get<int>() << " ";
std::cout << std::setw(9) << std::setprecision(2) << std::fixed << r["nodes"].get<float>() << " ";
std::cout << std::setw(9) << std::setprecision(2) << std::fixed << r["leaves"].get<float>() << " ";
std::cout << std::setw(9) << std::setprecision(2) << std::fixed << r["depth"].get<float>() << " ";
std::cout << std::setw(8) << std::right << std::setprecision(6) << std::fixed << r["score"].get<double>() << "±" << std::setw(6) << std::setprecision(4) << std::fixed << r["score_std"].get<double>();
const std::string status = compareResult(r["dataset"].get<std::string>(), r["score"].get<double>());
std::cout << status;
std::cout << std::setw(12) << std::right << std::setprecision(6) << std::fixed << r["time"].get<double>() << "±" << std::setw(6) << std::setprecision(4) << std::fixed << r["time_std"].get<double>() << " ";
std::cout << r["hyperparameters"].dump();
std::cout << std::endl;
std::cout << std::flush;
lastResult = r;
totalScore += r["score"].get<double>();
odd = !odd;
}
if (data["results"].size() == 1 || selectedIndex != -1) {
std::cout << std::string(MAXL, '*') << std::endl;
std::cout << headerLine(fVector("Train scores: ", lastResult["scores_train"], 14, 12));
std::cout << headerLine(fVector("Test scores: ", lastResult["scores_test"], 14, 12));
std::cout << headerLine(fVector("Train times: ", lastResult["times_train"], 10, 3));
std::cout << headerLine(fVector("Test times: ", lastResult["times_test"], 10, 3));
std::cout << std::string(MAXL, '*') << std::endl;
} else {
footer(totalScore);
}
}
void ReportConsole::showSummary()
{
for (const auto& item : summary) {
std::stringstream oss;
oss << std::setw(3) << std::left << item.first;
oss << std::setw(3) << std::right << item.second << " ";
oss << std::left << meaning.at(item.first);
std::cout << headerLine(oss.str(), 2);
}
}
void ReportConsole::footer(double totalScore)
{
std::cout << Colors::MAGENTA() << std::string(MAXL, '*') << std::endl;
showSummary();
auto score = data["score_name"].get<std::string>();
auto best = BestScore::getScore(score);
if (best.first != "") {
std::stringstream oss;
oss << score << " compared to " << best.first << " .: " << totalScore / best.second;
std::cout << headerLine(oss.str());
}
if (!getExistBestFile() && compare) {
std::cout << headerLine("*** Best Results File not found. Couldn't compare any result!");
}
std::cout << std::string(MAXL, '*') << std::endl << Colors::RESET();
}
}

View File

@@ -0,0 +1,22 @@
#ifndef REPORTCONSOLE_H
#define REPORTCONSOLE_H
#include <string>
#include "ReportBase.h"
#include "Colors.h"
namespace platform {
const int MAXL = 133;
class ReportConsole : public ReportBase {
public:
explicit ReportConsole(json data_, bool compare = false, int index = -1) : ReportBase(data_, compare), selectedIndex(index) {};
virtual ~ReportConsole() = default;
private:
int selectedIndex;
std::string headerLine(const std::string& text, int utf);
void header() override;
void body() override;
void footer(double totalScore);
void showSummary() override;
};
};
#endif

180
src/Platform/ReportExcel.cc Normal file
View File

@@ -0,0 +1,180 @@
#include <sstream>
#include <locale>
#include "ReportExcel.h"
#include "BestScore.h"
namespace platform {
ReportExcel::ReportExcel(json data_, bool compare, lxw_workbook* workbook, lxw_worksheet* worksheet) : ReportBase(data_, compare), ExcelFile(workbook, worksheet)
{
createFile();
}
void ReportExcel::formatColumns()
{
worksheet_freeze_panes(worksheet, 6, 1);
std::vector<int> columns_sizes = { 22, 10, 9, 7, 12, 12, 12, 12, 12, 3, 15, 12, 23 };
for (int i = 0; i < columns_sizes.size(); ++i) {
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
}
}
void ReportExcel::createWorksheet()
{
const std::string name = data["model"].get<std::string>();
std::string suffix = "";
std::string efectiveName;
int num = 1;
// Create a sheet with the name of the model
while (true) {
efectiveName = name + suffix;
if (workbook_get_worksheet_by_name(workbook, efectiveName.c_str())) {
suffix = std::to_string(++num);
} else {
worksheet = workbook_add_worksheet(workbook, efectiveName.c_str());
break;
}
if (num > 100) {
throw std::invalid_argument("Couldn't create sheet " + efectiveName);
}
}
}
void ReportExcel::createFile()
{
if (workbook == NULL) {
workbook = workbook_new((Paths::excel() + Paths::excelResults()).c_str());
}
if (worksheet == NULL) {
createWorksheet();
}
setProperties(data["title"].get<std::string>());
createFormats();
formatColumns();
}
void ReportExcel::closeFile()
{
workbook_close(workbook);
}
void ReportExcel::header()
{
std::locale mylocale(std::cout.getloc(), new separated);
std::locale::global(mylocale);
std::cout.imbue(mylocale);
std::stringstream oss;
std::string message = data["model"].get<std::string>() + " ver. " + data["version"].get<std::string>() + " " +
data["language"].get<std::string>() + " ver. " + data["language_version"].get<std::string>() +
" with " + std::to_string(data["folds"].get<int>()) + " Folds cross validation and " + std::to_string(data["seeds"].size()) +
" random seeds. " + data["date"].get<std::string>() + " " + data["time"].get<std::string>();
worksheet_merge_range(worksheet, 0, 0, 0, 12, message.c_str(), styles["headerFirst"]);
worksheet_merge_range(worksheet, 1, 0, 1, 12, data["title"].get<std::string>().c_str(), styles["headerRest"]);
worksheet_merge_range(worksheet, 2, 0, 3, 0, ("Score is " + data["score_name"].get<std::string>()).c_str(), styles["headerRest"]);
worksheet_merge_range(worksheet, 2, 1, 3, 3, "Execution time", styles["headerRest"]);
oss << std::setprecision(2) << std::fixed << data["duration"].get<float>() << " s";
worksheet_merge_range(worksheet, 2, 4, 2, 5, oss.str().c_str(), styles["headerRest"]);
oss.str("");
oss.clear();
oss << std::setprecision(2) << std::fixed << data["duration"].get<float>() / 3600 << " h";
worksheet_merge_range(worksheet, 3, 4, 3, 5, oss.str().c_str(), styles["headerRest"]);
worksheet_merge_range(worksheet, 2, 6, 3, 7, "Platform", styles["headerRest"]);
worksheet_merge_range(worksheet, 2, 8, 3, 9, data["platform"].get<std::string>().c_str(), styles["headerRest"]);
worksheet_merge_range(worksheet, 2, 10, 2, 12, ("Random seeds: " + fromVector("seeds")).c_str(), styles["headerSmall"]);
oss.str("");
oss.clear();
oss << "Stratified: " << (data["stratified"].get<bool>() ? "True" : "False");
worksheet_merge_range(worksheet, 3, 10, 3, 11, oss.str().c_str(), styles["headerSmall"]);
oss.str("");
oss.clear();
oss << "Discretized: " << (data["discretized"].get<bool>() ? "True" : "False");
worksheet_write_string(worksheet, 3, 12, oss.str().c_str(), styles["headerSmall"]);
}
void ReportExcel::body()
{
auto head = std::vector<std::string>(
{ "Dataset", "Samples", "Features", "Classes", "Nodes", "Edges", "States", "Score", "Score Std.", "St.", "Time",
"Time Std.", "Hyperparameters" });
int col = 0;
for (const auto& item : head) {
writeString(5, col++, item, "bodyHeader");
}
row = 6;
col = 0;
int hypSize = 22;
json lastResult;
double totalScore = 0.0;
std::string hyperparameters;
for (const auto& r : data["results"]) {
writeString(row, col, r["dataset"].get<std::string>(), "text");
writeInt(row, col + 1, r["samples"].get<int>(), "ints");
writeInt(row, col + 2, r["features"].get<int>(), "ints");
writeInt(row, col + 3, r["classes"].get<int>(), "ints");
writeDouble(row, col + 4, r["nodes"].get<float>(), "floats");
writeDouble(row, col + 5, r["leaves"].get<float>(), "floats");
writeDouble(row, col + 6, r["depth"].get<double>(), "floats");
writeDouble(row, col + 7, r["score"].get<double>(), "result");
writeDouble(row, col + 8, r["score_std"].get<double>(), "result");
const std::string status = compareResult(r["dataset"].get<std::string>(), r["score"].get<double>());
writeString(row, col + 9, status, "textCentered");
writeDouble(row, col + 10, r["time"].get<double>(), "time");
writeDouble(row, col + 11, r["time_std"].get<double>(), "time");
hyperparameters = r["hyperparameters"].dump();
if (hyperparameters.size() > hypSize) {
hypSize = hyperparameters.size();
}
writeString(row, col + 12, hyperparameters, "text");
lastResult = r;
totalScore += r["score"].get<double>();
row++;
}
// Set the right column width of hyperparameters with the maximum length
worksheet_set_column(worksheet, 12, 12, hypSize + 5, NULL);
// Show totals if only one dataset is present in the result
if (data["results"].size() == 1) {
for (const std::string& group : { "scores_train", "scores_test", "times_train", "times_test" }) {
row++;
col = 1;
writeString(row, col, group, "text");
for (double item : lastResult[group]) {
std::string style = group.find("scores") != std::string::npos ? "result" : "time";
writeDouble(row, ++col, item, style);
}
}
// Set with of columns to show those totals completely
worksheet_set_column(worksheet, 1, 1, 12, NULL);
for (int i = 2; i < 7; ++i) {
// doesn't work with from col to col, so...
worksheet_set_column(worksheet, i, i, 15, NULL);
}
} else {
footer(totalScore, row);
}
}
void ReportExcel::showSummary()
{
for (const auto& item : summary) {
worksheet_write_string(worksheet, row + 2, 1, item.first.c_str(), styles["summaryStyle"]);
worksheet_write_number(worksheet, row + 2, 2, item.second, styles["summaryStyle"]);
worksheet_merge_range(worksheet, row + 2, 3, row + 2, 5, meaning.at(item.first).c_str(), styles["summaryStyle"]);
row += 1;
}
}
void ReportExcel::footer(double totalScore, int row)
{
showSummary();
row += 4 + summary.size();
auto score = data["score_name"].get<std::string>();
auto best = BestScore::getScore(score);
if (best.first != "") {
worksheet_merge_range(worksheet, row, 1, row, 5, (score + " compared to " + best.first + " .:").c_str(), efectiveStyle("text"));
writeDouble(row, 6, totalScore / best.second, "result");
}
if (!getExistBestFile() && compare) {
worksheet_write_string(worksheet, row + 1, 0, "*** Best Results File not found. Couldn't compare any result!", styles["summaryStyle"]);
}
}
}

View File

@@ -0,0 +1,24 @@
#ifndef REPORTEXCEL_H
#define REPORTEXCEL_H
#include<map>
#include "xlsxwriter.h"
#include "ReportBase.h"
#include "ExcelFile.h"
#include "Colors.h"
namespace platform {
class ReportExcel : public ReportBase, public ExcelFile {
public:
explicit ReportExcel(json data_, bool compare, lxw_workbook* workbook, lxw_worksheet* worksheet = NULL);
private:
void formatColumns();
void createFile();
void createWorksheet();
void closeFile();
void header() override;
void body() override;
void showSummary() override;
void footer(double totalScore, int row);
};
};
#endif // !REPORTEXCEL_H

58
src/Platform/Result.cc Normal file
View File

@@ -0,0 +1,58 @@
#include "Result.h"
#include "BestScore.h"
#include <filesystem>
#include <fstream>
#include <sstream>
#include "Colors.h"
#include "DotEnv.h"
#include "CLocale.h"
namespace platform {
Result::Result(const std::string& path, const std::string& filename)
: path(path)
, filename(filename)
{
auto data = load();
date = data["date"];
score = 0;
for (const auto& result : data["results"]) {
score += result["score"].get<double>();
}
scoreName = data["score_name"];
auto best = BestScore::getScore(scoreName);
if (best.first != "") {
score /= best.second;
}
title = data["title"];
duration = data["duration"];
model = data["model"];
complete = data["results"].size() > 1;
}
json Result::load() const
{
std::ifstream resultData(path + "/" + filename);
if (resultData.is_open()) {
json data = json::parse(resultData);
return data;
}
throw std::invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
}
std::string Result::to_string(int maxModel) const
{
auto tmp = ConfigLocale();
std::stringstream oss;
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
std::string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
oss << date << " ";
oss << std::setw(maxModel) << std::left << model << " ";
oss << std::setw(11) << std::left << scoreName << " ";
oss << std::right << std::setw(11) << std::setprecision(7) << std::fixed << score << " ";
auto completeString = isComplete() ? "C" : "P";
oss << std::setw(1) << " " << completeString << " ";
oss << std::setw(7) << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit << " ";
oss << std::setw(50) << std::left << title << " ";
return oss.str();
}
}

35
src/Platform/Result.h Normal file
View File

@@ -0,0 +1,35 @@
#ifndef RESULT_H
#define RESULT_H
#include <map>
#include <vector>
#include <string>
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
class Result {
public:
Result(const std::string& path, const std::string& filename);
json load() const;
std::string to_string(int maxModel) const;
std::string getFilename() const { return filename; };
std::string getDate() const { return date; };
double getScore() const { return score; };
std::string getTitle() const { return title; };
double getDuration() const { return duration; };
std::string getModel() const { return model; };
std::string getScoreName() const { return scoreName; };
bool isComplete() const { return complete; };
private:
std::string path;
std::string filename;
std::string date;
double score;
std::string title;
double duration;
std::string model;
std::string scoreName;
bool complete;
};
};
#endif

74
src/Platform/Results.cc Normal file
View File

@@ -0,0 +1,74 @@
#include "Results.h"
#include <algorithm>
namespace platform {
Results::Results(const std::string& path, const std::string& model, const std::string& score, bool complete, bool partial) :
path(path), model(model), scoreName(score), complete(complete), partial(partial)
{
load();
if (!files.empty()) {
maxModel = (*max_element(files.begin(), files.end(), [](const Result& a, const Result& b) { return a.getModel().size() < b.getModel().size(); })).getModel().size();
} else {
maxModel = 0;
}
};
void Results::load()
{
using std::filesystem::directory_iterator;
for (const auto& file : directory_iterator(path)) {
auto filename = file.path().filename().string();
if (filename.find(".json") != std::string::npos && filename.find("results_") == 0) {
auto result = Result(path, filename);
bool addResult = true;
if (model != "any" && result.getModel() != model || scoreName != "any" && scoreName != result.getScoreName() || complete && !result.isComplete() || partial && result.isComplete())
addResult = false;
if (addResult)
files.push_back(result);
}
}
}
void Results::hideResult(int index, const std::string& pathHidden)
{
auto filename = files.at(index).getFilename();
rename((path + "/" + filename).c_str(), (pathHidden + "/" + filename).c_str());
files.erase(files.begin() + index);
}
void Results::deleteResult(int index)
{
auto filename = files.at(index).getFilename();
remove((path + "/" + filename).c_str());
files.erase(files.begin() + index);
}
int Results::size() const
{
return files.size();
}
void Results::sortDate()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getDate() > b.getDate();
});
}
void Results::sortModel()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getModel() > b.getModel();
});
}
void Results::sortDuration()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getDuration() > b.getDuration();
});
}
void Results::sortScore()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getScore() > b.getScore();
});
}
bool Results::empty() const
{
return files.empty();
}
}

36
src/Platform/Results.h Normal file
View File

@@ -0,0 +1,36 @@
#ifndef RESULTS_H
#define RESULTS_H
#include <map>
#include <vector>
#include <string>
#include <nlohmann/json.hpp>
#include "Result.h"
namespace platform {
using json = nlohmann::json;
class Results {
public:
Results(const std::string& path, const std::string& model, const std::string& score, bool complete, bool partial);
void sortDate();
void sortScore();
void sortModel();
void sortDuration();
int maxModelSize() const { return maxModel; };
void hideResult(int index, const std::string& pathHidden);
void deleteResult(int index);
int size() const;
bool empty() const;
std::vector<Result>::iterator begin() { return files.begin(); };
std::vector<Result>::iterator end() { return files.end(); };
Result& at(int index) { return files.at(index); };
private:
std::string path;
std::string model;
std::string scoreName;
bool complete;
bool partial;
int maxModel;
std::vector<Result> files;
void load(); // Loads the list of results
};
};
#endif

252
src/Platform/Statistics.cc Normal file
View File

@@ -0,0 +1,252 @@
#include <sstream>
#include "Statistics.h"
#include "Colors.h"
#include "Symbols.h"
#include <boost/math/distributions/chi_squared.hpp>
#include <boost/math/distributions/normal.hpp>
#include "CLocale.h"
namespace platform {
Statistics::Statistics(const std::vector<std::string>& models, const std::vector<std::string>& datasets, const json& data, double significance, bool output) :
models(models), datasets(datasets), data(data), significance(significance), output(output)
{
nModels = models.size();
nDatasets = datasets.size();
auto temp = ConfigLocale();
};
void Statistics::fit()
{
if (nModels < 3 || nDatasets < 3) {
std::cerr << "nModels: " << nModels << std::endl;
std::cerr << "nDatasets: " << nDatasets << std::endl;
throw std::runtime_error("Can't make the Friedman test with less than 3 models and/or less than 3 datasets.");
}
ranksModels.clear();
computeRanks();
// Set the control model as the one with the lowest average rank
controlIdx = distance(ranks.begin(), min_element(ranks.begin(), ranks.end(), [](const auto& l, const auto& r) { return l.second < r.second; }));
computeWTL();
maxModelName = (*std::max_element(models.begin(), models.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
maxDatasetName = (*std::max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
fitted = true;
}
std::map<std::string, float> assignRanks(std::vector<std::pair<std::string, double>>& ranksOrder)
{
// sort the ranksOrder std::vector by value
std::sort(ranksOrder.begin(), ranksOrder.end(), [](const std::pair<std::string, double>& a, const std::pair<std::string, double>& b) {
return a.second > b.second;
});
//Assign ranks to values and if they are the same they share the same averaged rank
std::map<std::string, float> ranks;
for (int i = 0; i < ranksOrder.size(); i++) {
ranks[ranksOrder[i].first] = i + 1.0;
}
int i = 0;
while (i < static_cast<int>(ranksOrder.size())) {
int j = i + 1;
int sumRanks = ranks[ranksOrder[i].first];
while (j < static_cast<int>(ranksOrder.size()) && ranksOrder[i].second == ranksOrder[j].second) {
sumRanks += ranks[ranksOrder[j++].first];
}
if (j > i + 1) {
float averageRank = (float)sumRanks / (j - i);
for (int k = i; k < j; k++) {
ranks[ranksOrder[k].first] = averageRank;
}
}
i = j;
}
return ranks;
}
void Statistics::computeRanks()
{
std::map<std::string, float> ranksLine;
for (const auto& dataset : datasets) {
std::vector<std::pair<std::string, double>> ranksOrder;
for (const auto& model : models) {
double value = data[model].at(dataset).at(0).get<double>();
ranksOrder.push_back({ model, value });
}
// Assign the ranks
ranksLine = assignRanks(ranksOrder);
// Store the ranks of the dataset
ranksModels[dataset] = ranksLine;
if (ranks.size() == 0) {
ranks = ranksLine;
} else {
for (const auto& rank : ranksLine) {
ranks[rank.first] += rank.second;
}
}
}
// Average the ranks
for (const auto& rank : ranks) {
ranks[rank.first] /= nDatasets;
}
}
void Statistics::computeWTL()
{
// Compute the WTL matrix
for (int i = 0; i < nModels; ++i) {
wtl[i] = { 0, 0, 0 };
}
json origin = data.begin().value();
for (auto const& item : origin.items()) {
auto controlModel = models.at(controlIdx);
double controlValue = data[controlModel].at(item.key()).at(0).get<double>();
for (int i = 0; i < nModels; ++i) {
if (i == controlIdx) {
continue;
}
double value = data[models[i]].at(item.key()).at(0).get<double>();
if (value < controlValue) {
wtl[i].win++;
} else if (value == controlValue) {
wtl[i].tie++;
} else {
wtl[i].loss++;
}
}
}
}
void Statistics::postHocHolmTest(bool friedmanResult)
{
if (!fitted) {
fit();
}
std::stringstream oss;
// Reference https://link.springer.com/article/10.1007/s44196-022-00083-8
// Post-hoc Holm test
// Calculate the p-value for the models paired with the control model
std::map<int, double> stats; // p-value of each model paired with the control model
boost::math::normal dist(0.0, 1.0);
double diff = sqrt(nModels * (nModels + 1) / (6.0 * nDatasets));
for (int i = 0; i < nModels; i++) {
if (i == controlIdx) {
stats[i] = 0.0;
continue;
}
double z = abs(ranks.at(models[controlIdx]) - ranks.at(models[i])) / diff;
double p_value = (long double)2 * (1 - cdf(dist, z));
stats[i] = p_value;
}
// Sort the models by p-value
std::vector<std::pair<int, double>> statsOrder;
for (const auto& stat : stats) {
statsOrder.push_back({ stat.first, stat.second });
}
std::sort(statsOrder.begin(), statsOrder.end(), [](const std::pair<int, double>& a, const std::pair<int, double>& b) {
return a.second < b.second;
});
// Holm adjustment
for (int i = 0; i < statsOrder.size(); ++i) {
auto item = statsOrder.at(i);
double before = i == 0 ? 0.0 : statsOrder.at(i - 1).second;
double p_value = std::min((double)1.0, item.second * (nModels - i));
p_value = std::max(before, p_value);
statsOrder[i] = { item.first, p_value };
}
holmResult.model = models.at(controlIdx);
auto color = friedmanResult ? Colors::CYAN() : Colors::YELLOW();
oss << color;
oss << " *************************************************************************************************************" << std::endl;
oss << " Post-hoc Holm test: H0: 'There is no significant differences between the control model and the other models.'" << std::endl;
oss << " Control model: " << models.at(controlIdx) << std::endl;
oss << " " << std::left << std::setw(maxModelName) << std::string("Model") << " p-value rank win tie loss Status" << std::endl;
oss << " " << std::string(maxModelName, '=') << " ============ ========= === === ==== =============" << std::endl;
// sort ranks from lowest to highest
std::vector<std::pair<std::string, float>> ranksOrder;
for (const auto& rank : ranks) {
ranksOrder.push_back({ rank.first, rank.second });
}
std::sort(ranksOrder.begin(), ranksOrder.end(), [](const std::pair<std::string, float>& a, const std::pair<std::string, float>& b) {
return a.second < b.second;
});
// Show the control model info.
oss << " " << Colors::BLUE() << std::left << std::setw(maxModelName) << ranksOrder.at(0).first << " ";
oss << std::setw(12) << " " << std::setprecision(7) << std::fixed << " " << ranksOrder.at(0).second << std::endl;
for (const auto& item : ranksOrder) {
auto idx = distance(models.begin(), find(models.begin(), models.end(), item.first));
double pvalue = 0.0;
for (const auto& stat : statsOrder) {
if (stat.first == idx) {
pvalue = stat.second;
}
}
holmResult.holmLines.push_back({ item.first, pvalue, item.second, wtl.at(idx), pvalue < significance });
if (item.first == models.at(controlIdx)) {
continue;
}
auto colorStatus = pvalue > significance ? Colors::GREEN() : Colors::MAGENTA();
auto status = pvalue > significance ? Symbols::check_mark : Symbols::cross;
auto textStatus = pvalue > significance ? " accepted H0" : " rejected H0";
oss << " " << colorStatus << std::left << std::setw(maxModelName) << item.first << " ";
oss << std::setprecision(6) << std::scientific << pvalue << std::setprecision(7) << std::fixed << " " << item.second;
oss << " " << std::right << std::setw(3) << wtl.at(idx).win << " " << std::setw(3) << wtl.at(idx).tie << " " << std::setw(4) << wtl.at(idx).loss;
oss << " " << status << textStatus << std::endl;
}
oss << color << " *************************************************************************************************************" << std::endl;
oss << Colors::RESET();
if (output) {
std::cout << oss.str();
}
}
bool Statistics::friedmanTest()
{
if (!fitted) {
fit();
}
std::stringstream oss;
// Friedman test
// Calculate the Friedman statistic
oss << Colors::BLUE() << std::endl;
oss << "***************************************************************************************************************" << std::endl;
oss << Colors::GREEN() << "Friedman test: H0: 'There is no significant differences between all the classifiers.'" << Colors::BLUE() << std::endl;
double degreesOfFreedom = nModels - 1.0;
double sumSquared = 0;
for (const auto& rank : ranks) {
sumSquared += pow(rank.second, 2);
}
// Compute the Friedman statistic as in https://link.springer.com/article/10.1007/s44196-022-00083-8
double friedmanQ = 12.0 * nDatasets / (nModels * (nModels + 1)) * (sumSquared - (nModels * pow(nModels + 1, 2)) / 4);
// Calculate the critical value
boost::math::chi_squared chiSquared(degreesOfFreedom);
long double p_value = (long double)1.0 - cdf(chiSquared, friedmanQ);
double criticalValue = quantile(chiSquared, 1 - significance);
oss << "Friedman statistic: " << friedmanQ << std::endl;
oss << "Critical χ2 Value for df=" << std::fixed << (int)degreesOfFreedom
<< " and alpha=" << std::setprecision(2) << std::fixed << significance << ": " << std::setprecision(7) << std::scientific << criticalValue << std::endl;
oss << "p-value: " << std::scientific << p_value << " is " << (p_value < significance ? "less" : "greater") << " than " << std::setprecision(2) << std::fixed << significance << std::endl;
bool result;
if (p_value < significance) {
oss << Colors::GREEN() << "The null hypothesis H0 is rejected." << std::endl;
result = true;
} else {
oss << Colors::YELLOW() << "The null hypothesis H0 is accepted. Computed p-values will not be significant." << std::endl;
result = false;
}
oss << Colors::BLUE() << "***************************************************************************************************************" << Colors::RESET() << std::endl;
if (output) {
std::cout << oss.str();
}
friedmanResult = { friedmanQ, criticalValue, p_value, result };
return result;
}
FriedmanResult& Statistics::getFriedmanResult()
{
return friedmanResult;
}
HolmResult& Statistics::getHolmResult()
{
return holmResult;
}
std::map<std::string, std::map<std::string, float>>& Statistics::getRanks()
{
return ranksModels;
}
} // namespace platform

63
src/Platform/Statistics.h Normal file
View File

@@ -0,0 +1,63 @@
#ifndef STATISTICS_H
#define STATISTICS_H
#include <iostream>
#include <vector>
#include <map>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
namespace platform {
struct WTL {
int win;
int tie;
int loss;
};
struct FriedmanResult {
double statistic;
double criticalValue;
long double pvalue;
bool reject;
};
struct HolmLine {
std::string model;
long double pvalue;
double rank;
WTL wtl;
bool reject;
};
struct HolmResult {
std::string model;
std::vector<HolmLine> holmLines;
};
class Statistics {
public:
Statistics(const std::vector<std::string>& models, const std::vector<std::string>& datasets, const json& data, double significance = 0.05, bool output = true);
bool friedmanTest();
void postHocHolmTest(bool friedmanResult);
FriedmanResult& getFriedmanResult();
HolmResult& getHolmResult();
std::map<std::string, std::map<std::string, float>>& getRanks();
private:
void fit();
void computeRanks();
void computeWTL();
const std::vector<std::string>& models;
const std::vector<std::string>& datasets;
const json& data;
double significance;
bool output;
bool fitted = false;
int nModels = 0;
int nDatasets = 0;
int controlIdx = 0;
std::map<int, WTL> wtl;
std::map<std::string, float> ranks;
int maxModelName = 0;
int maxDatasetName = 0;
FriedmanResult friedmanResult;
HolmResult holmResult;
std::map<std::string, std::map<std::string, float>> ranksModels;
};
}
#endif // !STATISTICS_H

17
src/Platform/Symbols.h Normal file
View File

@@ -0,0 +1,17 @@
#ifndef SYMBOLS_H
#define SYMBOLS_H
#include <string>
namespace platform {
class Symbols {
public:
inline static const std::string check_mark{ "\u2714" };
inline static const std::string exclamation{ "\u2757" };
inline static const std::string black_star{ "\u2605" };
inline static const std::string cross{ "\u2717" };
inline static const std::string upward_arrow{ "\u27B6" };
inline static const std::string down_arrow{ "\u27B4" };
inline static const std::string equal_best{ check_mark };
inline static const std::string better_best{ black_star };
};
}
#endif // !SYMBOLS_H

43
src/Platform/Timer.h Normal file
View File

@@ -0,0 +1,43 @@
#ifndef TIMER_H
#define TIMER_H
#include <chrono>
#include <string>
#include <sstream>
namespace platform {
class Timer {
private:
std::chrono::high_resolution_clock::time_point begin;
std::chrono::high_resolution_clock::time_point end;
public:
Timer() = default;
~Timer() = default;
void start() { begin = std::chrono::high_resolution_clock::now(); }
void stop() { end = std::chrono::high_resolution_clock::now(); }
double getDuration()
{
stop();
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (end - begin);
return time_span.count();
}
double getLapse()
{
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (std::chrono::high_resolution_clock::now() - begin);
return time_span.count();
}
std::string getDurationString(bool lapse = false)
{
double duration = lapse ? getLapse() : getDuration();
return translate2String(duration);
}
std::string translate2String(double duration)
{
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
std::string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
std::stringstream ss;
ss << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit;
return ss.str();
}
};
} /* namespace platform */
#endif /* TIMER_H */

30
src/Platform/Utils.h Normal file
View File

@@ -0,0 +1,30 @@
#ifndef UTILS_H
#define UTILS_H
#include <sstream>
#include <string>
#include <vector>
namespace platform {
//static std::vector<std::string> split(const std::string& text, char delimiter);
static std::vector<std::string> split(const std::string& text, char delimiter)
{
std::vector<std::string> result;
std::stringstream ss(text);
std::string token;
while (std::getline(ss, token, delimiter)) {
result.push_back(token);
}
return result;
}
static std::string trim(const std::string& str)
{
std::string result = str;
result.erase(result.begin(), std::find_if(result.begin(), result.end(), [](int ch) {
return !std::isspace(ch);
}));
result.erase(std::find_if(result.rbegin(), result.rend(), [](int ch) {
return !std::isspace(ch);
}).base(), result.end());
return result;
}
}
#endif

85
src/Platform/b_best.cc Normal file
View File

@@ -0,0 +1,85 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include "Paths.h"
#include "BestResults.h"
#include "Colors.h"
#include "config.h"
void manageArguments(argparse::ArgumentParser& program, int argc, char** argv)
{
program.add_argument("-m", "--model").default_value("").help("Filter results of the selected model) (any for all models)");
program.add_argument("-s", "--score").default_value("").help("Filter results of the score name supplied");
program.add_argument("--build").help("build best score results file").default_value(false).implicit_value(true);
program.add_argument("--report").help("report of best score results file").default_value(false).implicit_value(true);
program.add_argument("--friedman").help("Friedman test").default_value(false).implicit_value(true);
program.add_argument("--excel").help("Output to excel").default_value(false).implicit_value(true);
program.add_argument("--level").help("significance level").default_value(0.05).scan<'g', double>().action([](const std::string& value) {
try {
auto k = std::stod(value);
if (k < 0.01 || k > 0.15) {
throw std::runtime_error("Significance level hast to be a number in [0.01, 0.15]");
}
return k;
}
catch (const std::runtime_error& err) {
throw std::runtime_error(err.what());
}
catch (...) {
throw std::runtime_error("Number of folds must be an decimal number");
}});
}
int main(int argc, char** argv)
{
argparse::ArgumentParser program("b_best", { project_version.begin(), project_version.end() });
manageArguments(program, argc, argv);
std::string model, score;
bool build, report, friedman, excel;
double level;
try {
program.parse_args(argc, argv);
model = program.get<std::string>("model");
score = program.get<std::string>("score");
build = program.get<bool>("build");
report = program.get<bool>("report");
friedman = program.get<bool>("friedman");
excel = program.get<bool>("excel");
level = program.get<double>("level");
if (model == "" || score == "") {
throw std::runtime_error("Model and score name must be supplied");
}
if (friedman && model != "any") {
std::cerr << "Friedman test can only be used with all models" << std::endl;
std::cerr << program;
exit(1);
}
if (!report && !build) {
std::cerr << "Either build, report or both, have to be selected to do anything!" << std::endl;
std::cerr << program;
exit(1);
}
}
catch (const std::exception& err) {
std::cerr << err.what() << std::endl;
std::cerr << program;
exit(1);
}
// Generate report
auto results = platform::BestResults(platform::Paths::results(), score, model, friedman, level);
if (build) {
if (model == "any") {
results.buildAll();
} else {
std::string fileName = results.build();
std::cout << Colors::GREEN() << fileName << " created!" << Colors::RESET() << std::endl;
}
}
if (report) {
if (model == "any") {
results.reportAll(excel);
} else {
results.reportSingle(excel);
}
}
return 0;
}

232
src/Platform/b_grid.cc Normal file
View File

@@ -0,0 +1,232 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include <map>
#include <nlohmann/json.hpp>
#include <mpi.h>
#include "DotEnv.h"
#include "Models.h"
#include "modelRegister.h"
#include "GridSearch.h"
#include "Paths.h"
#include "Timer.h"
#include "Colors.h"
#include "config.h"
using json = nlohmann::json;
const int MAXL = 133;
void manageArguments(argparse::ArgumentParser& program)
{
auto env = platform::DotEnv();
auto& group = program.add_mutually_exclusive_group(true);
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->tostring())
.action([](const std::string& value) {
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw std::runtime_error("Model must be one of " + platform::Models::instance()->tostring());
}
);
group.add_argument("--dump").help("Show the grid combinations").default_value(false).implicit_value(true);
group.add_argument("--report").help("Report the computed hyperparameters").default_value(false).implicit_value(true);
group.add_argument("--compute").help("Perform computation of the grid output hyperparameters").default_value(false).implicit_value(true);
program.add_argument("--discretize").help("Discretize input datasets").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
program.add_argument("--continue").help("Continue computing from that dataset").default_value(platform::GridSearch::NO_CONTINUE());
program.add_argument("--only").help("Used with continue to compute that dataset only").default_value(false).implicit_value(true);
program.add_argument("--exclude").default_value("[]").help("Datasets to exclude in json format, e.g. [\"dataset1\", \"dataset2\"]");
program.add_argument("--nested").help("Set the double/nested cross validation number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw std::runtime_error("Number of nested folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw std::runtime_error(err.what());
}
catch (...) {
throw std::runtime_error("Number of nested folds must be an integer");
}});
program.add_argument("--score").help("Score used in gridsearch").default_value("accuracy");
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw std::runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw std::runtime_error(err.what());
}
catch (...) {
throw std::runtime_error("Number of folds must be an integer");
}});
auto seed_values = env.getSeeds();
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
}
void list_dump(std::string& model)
{
auto data = platform::GridData(platform::Paths::grid_input(model));
std::cout << Colors::MAGENTA() << "Listing configuration input file (Grid)" << std::endl << std::endl;
int index = 0;
int max_hyper = 15;
int max_dataset = 7;
auto combinations = data.getGridFile();
for (auto const& item : combinations) {
if (item.first.size() > max_dataset) {
max_dataset = item.first.size();
}
if (item.second.dump().size() > max_hyper) {
max_hyper = item.second.dump().size();
}
}
std::cout << Colors::GREEN() << left << " # " << left << setw(max_dataset) << "Dataset" << " #Com. "
<< setw(max_hyper) << "Hyperparameters" << std::endl;
std::cout << "=== " << string(max_dataset, '=') << " ===== " << string(max_hyper, '=') << std::endl;
bool odd = true;
for (auto const& item : combinations) {
auto color = odd ? Colors::CYAN() : Colors::BLUE();
std::cout << color;
auto num_combinations = data.getNumCombinations(item.first);
std::cout << setw(3) << fixed << right << ++index << left << " " << setw(max_dataset) << item.first
<< " " << setw(5) << right << num_combinations << " " << setw(max_hyper) << item.second.dump() << std::endl;
odd = !odd;
}
std::cout << Colors::RESET() << std::endl;
}
std::string headerLine(const std::string& text, int utf = 0)
{
int n = MAXL - text.length() - 3;
n = n < 0 ? 0 : n;
return "* " + text + std::string(n + utf, ' ') + "*\n";
}
void list_results(json& results, std::string& model)
{
std::cout << Colors::MAGENTA() << std::string(MAXL, '*') << std::endl;
std::cout << headerLine("Listing computed hyperparameters for model " + model);
std::cout << headerLine("Date & time: " + results["date"].get<std::string>() + " Duration: " + results["duration"].get<std::string>());
std::cout << headerLine("Score: " + results["score"].get<std::string>());
std::cout << headerLine(
"Random seeds: " + results["seeds"].dump()
+ " Discretized: " + (results["discretize"].get<bool>() ? "True" : "False")
+ " Stratified: " + (results["stratified"].get<bool>() ? "True" : "False")
+ " #Folds: " + std::to_string(results["n_folds"].get<int>())
+ " Nested: " + (results["nested"].get<int>() == 0 ? "False" : to_string(results["nested"].get<int>()))
);
std::cout << std::string(MAXL, '*') << std::endl;
int spaces = 7;
int hyperparameters_spaces = 15;
for (const auto& item : results["results"].items()) {
auto key = item.key();
auto value = item.value();
if (key.size() > spaces) {
spaces = key.size();
}
if (value["hyperparameters"].dump().size() > hyperparameters_spaces) {
hyperparameters_spaces = value["hyperparameters"].dump().size();
}
}
std::cout << Colors::GREEN() << " # " << left << setw(spaces) << "Dataset" << " " << setw(19) << "Date" << " "
<< "Duration " << setw(8) << "Score" << " " << "Hyperparameters" << std::endl;
std::cout << "=== " << string(spaces, '=') << " " << string(19, '=') << " " << string(8, '=') << " "
<< string(8, '=') << " " << string(hyperparameters_spaces, '=') << std::endl;
bool odd = true;
int index = 0;
for (const auto& item : results["results"].items()) {
auto color = odd ? Colors::CYAN() : Colors::BLUE();
auto value = item.value();
std::cout << color;
std::cout << std::setw(3) << std::right << index++ << " ";
std::cout << left << setw(spaces) << item.key() << " " << value["date"].get<string>()
<< " " << setw(8) << right << value["duration"].get<string>() << " " << setw(8) << setprecision(6)
<< fixed << right << value["score"].get<double>() << " " << value["hyperparameters"].dump() << std::endl;
odd = !odd;
}
std::cout << Colors::RESET() << std::endl;
}
/*
* Main
*/
int main(int argc, char** argv)
{
argparse::ArgumentParser program("b_grid", { project_version.begin(), project_version.end() });
manageArguments(program);
struct platform::ConfigGrid config;
bool dump, compute;
try {
program.parse_args(argc, argv);
config.model = program.get<std::string>("model");
config.score = program.get<std::string>("score");
config.discretize = program.get<bool>("discretize");
config.stratified = program.get<bool>("stratified");
config.n_folds = program.get<int>("folds");
config.quiet = program.get<bool>("quiet");
config.only = program.get<bool>("only");
config.seeds = program.get<std::vector<int>>("seeds");
config.nested = program.get<int>("nested");
config.continue_from = program.get<std::string>("continue");
if (config.continue_from == platform::GridSearch::NO_CONTINUE() && config.only) {
throw std::runtime_error("Cannot use --only without --continue");
}
dump = program.get<bool>("dump");
compute = program.get<bool>("compute");
if (dump && (config.continue_from != platform::GridSearch::NO_CONTINUE() || config.only)) {
throw std::runtime_error("Cannot use --dump with --continue or --only");
}
auto excluded = program.get<std::string>("exclude");
config.excluded = json::parse(excluded);
}
catch (const exception& err) {
cerr << err.what() << std::endl;
cerr << program;
exit(1);
}
/*
* Begin Processing
*/
auto env = platform::DotEnv();
config.platform = env.get("platform");
platform::Paths::createPath(platform::Paths::grid());
auto grid_search = platform::GridSearch(config);
platform::Timer timer;
timer.start();
if (dump) {
list_dump(config.model);
} else {
if (compute) {
struct platform::ConfigMPI mpi_config;
mpi_config.manager = 0; // which process is the manager
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_config.rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_config.n_procs);
if (mpi_config.n_procs < 2) {
throw std::runtime_error("Cannot use --compute with less than 2 mpi processes, try mpirun -np 2 ...");
}
grid_search.go(mpi_config);
if (mpi_config.rank == mpi_config.manager) {
auto results = grid_search.loadResults();
list_results(results, config.model);
std::cout << "Process took " << timer.getDurationString() << std::endl;
}
MPI_Finalize();
} else {
// List results
auto results = grid_search.loadResults();
if (results.empty()) {
std::cout << "** No results found" << std::endl;
} else {
list_results(results, config.model);
}
}
}
std::cout << "Done!" << std::endl;
return 0;
}

56
src/Platform/b_list.cc Normal file
View File

@@ -0,0 +1,56 @@
#include <iostream>
#include <locale>
#include "Paths.h"
#include "Colors.h"
#include "Datasets.h"
const int BALANCE_LENGTH = 75;
struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
std::string do_grouping() const { return "\03"; }
};
void outputBalance(const std::string& balance)
{
auto temp = std::string(balance);
while (temp.size() > BALANCE_LENGTH - 1) {
auto part = temp.substr(0, BALANCE_LENGTH);
std::cout << part << std::endl;
std::cout << setw(48) << " ";
temp = temp.substr(BALANCE_LENGTH);
}
std::cout << temp << std::endl;
}
int main(int argc, char** argv)
{
auto data = platform::Datasets(false, platform::Paths::datasets());
locale mylocale(std::cout.getloc(), new separated);
locale::global(mylocale);
std::cout.imbue(mylocale);
std::cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls. Balance" << std::endl;
std::string balanceBars = std::string(BALANCE_LENGTH, '=');
std::cout << "============================== ====== ===== === " << balanceBars << std::endl;
bool odd = true;
for (const auto& dataset : data.getNames()) {
auto color = odd ? Colors::CYAN() : Colors::BLUE();
std::cout << color << setw(30) << left << dataset << " ";
data.loadDataset(dataset);
auto nSamples = data.getNSamples(dataset);
std::cout << setw(6) << right << nSamples << " ";
std::cout << setw(5) << right << data.getFeatures(dataset).size() << " ";
std::cout << setw(3) << right << data.getNClasses(dataset) << " ";
std::stringstream oss;
std::string sep = "";
for (auto number : data.getClassesCounts(dataset)) {
oss << sep << std::setprecision(2) << fixed << (float)number / nSamples * 100.0 << "% (" << number << ")";
sep = " / ";
}
outputBalance(oss.str());
odd = !odd;
}
std::cout << Colors::RESET() << std::endl;
return 0;
}

135
src/Platform/b_main.cc Normal file
View File

@@ -0,0 +1,135 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "Experiment.h"
#include "Datasets.h"
#include "DotEnv.h"
#include "Models.h"
#include "modelRegister.h"
#include "Paths.h"
#include "config.h"
using json = nlohmann::json;
void manageArguments(argparse::ArgumentParser& program)
{
auto env = platform::DotEnv();
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
program.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
"Mutually exclusive with hyperparameters. This file should contain hyperparameters for each dataset in json format.");
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->tostring())
.action([](const std::string& value) {
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw std::runtime_error("Model must be one of " + platform::Models::instance()->tostring());
}
);
program.add_argument("--title").default_value("").help("Experiment title");
program.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
program.add_argument("--save").help("Save result (always save if no dataset is supplied)").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw std::runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw std::runtime_error(err.what());
}
catch (...) {
throw std::runtime_error("Number of folds must be an integer");
}});
auto seed_values = env.getSeeds();
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
}
int main(int argc, char** argv)
{
argparse::ArgumentParser program("b_main", { project_version.begin(), project_version.end() });
manageArguments(program);
std::string file_name, model_name, title, hyperparameters_file;
json hyperparameters_json;
bool discretize_dataset, stratified, saveResults, quiet;
std::vector<int> seeds;
std::vector<std::string> filesToTest;
int n_folds;
try {
program.parse_args(argc, argv);
file_name = program.get<std::string>("dataset");
model_name = program.get<std::string>("model");
discretize_dataset = program.get<bool>("discretize");
stratified = program.get<bool>("stratified");
quiet = program.get<bool>("quiet");
n_folds = program.get<int>("folds");
seeds = program.get<std::vector<int>>("seeds");
auto hyperparameters = program.get<std::string>("hyperparameters");
hyperparameters_json = json::parse(hyperparameters);
hyperparameters_file = program.get<std::string>("hyper-file");
if (hyperparameters_file != "" && hyperparameters != "{}") {
throw runtime_error("hyperparameters and hyper_file are mutually exclusive");
}
title = program.get<std::string>("title");
if (title == "" && file_name == "") {
throw runtime_error("title is mandatory if dataset is not provided");
}
saveResults = program.get<bool>("save");
}
catch (const exception& err) {
cerr << err.what() << std::endl;
cerr << program;
exit(1);
}
auto datasets = platform::Datasets(discretize_dataset, platform::Paths::datasets());
if (file_name != "") {
if (!datasets.isDataset(file_name)) {
cerr << "Dataset " << file_name << " not found" << std::endl;
exit(1);
}
if (title == "") {
title = "Test " + file_name + " " + model_name + " " + to_string(n_folds) + " folds";
}
filesToTest.push_back(file_name);
} else {
filesToTest = datasets.getNames();
saveResults = true;
}
platform::HyperParameters test_hyperparams;
if (hyperparameters_file != "") {
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_file);
} else {
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_json);
}
/*
* Begin Processing
*/
auto env = platform::DotEnv();
auto experiment = platform::Experiment();
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
experiment.setHyperparameters(test_hyperparams);
for (auto seed : seeds) {
experiment.addRandomSeed(seed);
}
platform::Timer timer;
timer.start();
experiment.go(filesToTest, quiet);
experiment.setDuration(timer.getDuration());
if (saveResults) {
experiment.save(platform::Paths::results());
}
if (!quiet)
experiment.report();
std::cout << "Done!" << std::endl;
return 0;
}

49
src/Platform/b_manage.cc Normal file
View File

@@ -0,0 +1,49 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include "ManageResults.h"
#include "config.h"
void manageArguments(argparse::ArgumentParser& program, int argc, char** argv)
{
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
program.add_argument("--complete").help("Show only results with all datasets").default_value(false).implicit_value(true);
program.add_argument("--partial").help("Show only partial results").default_value(false).implicit_value(true);
program.add_argument("--compare").help("Compare with best results").default_value(false).implicit_value(true);
try {
program.parse_args(argc, argv);
auto number = program.get<int>("number");
if (number < 0) {
throw std::runtime_error("Number of results must be greater than or equal to 0");
}
auto model = program.get<std::string>("model");
auto score = program.get<std::string>("score");
auto complete = program.get<bool>("complete");
auto partial = program.get<bool>("partial");
auto compare = program.get<bool>("compare");
}
catch (const std::exception& err) {
std::cerr << err.what() << std::endl;
std::cerr << program;
exit(1);
}
}
int main(int argc, char** argv)
{
auto program = argparse::ArgumentParser("b_manage", { project_version.begin(), project_version.end() });
manageArguments(program, argc, argv);
int number = program.get<int>("number");
std::string model = program.get<std::string>("model");
std::string score = program.get<std::string>("score");
auto complete = program.get<bool>("complete");
auto partial = program.get<bool>("partial");
auto compare = program.get<bool>("compare");
if (complete)
partial = false;
auto manager = platform::ManageResults(number, model, score, complete, partial, compare);
manager.doMenu();
return 0;
}

View File

@@ -0,0 +1,29 @@
#ifndef MODEL_REGISTER_H
#define MODEL_REGISTER_H
static platform::Registrar registrarT("TAN",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
static platform::Registrar registrarTLD("TANLd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANLd();});
static platform::Registrar registrarS("SPODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
static platform::Registrar registrarSLD("SPODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODELd(2);});
static platform::Registrar registrarK("KDB",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
static platform::Registrar registrarKLD("KDBLd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDBLd(2);});
static platform::Registrar registrarA("AODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
static platform::Registrar registrarALD("AODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
static platform::Registrar registrarBA("BoostAODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostAODE();});
static platform::Registrar registrarSt("STree",
[](void) -> bayesnet::BaseClassifier* { return new pywrap::STree();});
static platform::Registrar registrarOdte("Odte",
[](void) -> bayesnet::BaseClassifier* { return new pywrap::ODTE();});
static platform::Registrar registrarSvc("SVC",
[](void) -> bayesnet::BaseClassifier* { return new pywrap::SVC();});
static platform::Registrar registrarRaF("RandomForest",
[](void) -> bayesnet::BaseClassifier* { return new pywrap::RandomForest();});
#endif