Begin AdaBoost integration

This commit is contained in:
2025-06-18 11:27:11 +02:00
parent 023d5613b4
commit 415a7ae608
10 changed files with 1001 additions and 56 deletions

View File

@@ -21,7 +21,7 @@ add_executable(
experimental_clfs/XA1DE.cpp experimental_clfs/XA1DE.cpp
experimental_clfs/ExpClf.cpp experimental_clfs/ExpClf.cpp
experimental_clfs/DecisionTree.cpp experimental_clfs/DecisionTree.cpp
experimental_clfs/AdaBoost.cpp
) )
target_link_libraries(b_best Boost::boost "${PyClassifiers}" bayesnet::bayesnet fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" Boost::python Boost::numpy "${XLSXWRITER_LIB}") target_link_libraries(b_best Boost::boost "${PyClassifiers}" bayesnet::bayesnet fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" Boost::python Boost::numpy "${XLSXWRITER_LIB}")
@@ -36,6 +36,7 @@ add_executable(b_grid commands/b_grid.cpp ${grid_sources}
experimental_clfs/XA1DE.cpp experimental_clfs/XA1DE.cpp
experimental_clfs/ExpClf.cpp experimental_clfs/ExpClf.cpp
experimental_clfs/DecisionTree.cpp experimental_clfs/DecisionTree.cpp
experimental_clfs/AdaBoost.cpp
) )
target_link_libraries(b_grid ${MPI_CXX_LIBRARIES} "${PyClassifiers}" bayesnet::bayesnet fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" Boost::python Boost::numpy) target_link_libraries(b_grid ${MPI_CXX_LIBRARIES} "${PyClassifiers}" bayesnet::bayesnet fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" Boost::python Boost::numpy)
@@ -48,7 +49,7 @@ add_executable(b_list commands/b_list.cpp
experimental_clfs/XA1DE.cpp experimental_clfs/XA1DE.cpp
experimental_clfs/ExpClf.cpp experimental_clfs/ExpClf.cpp
experimental_clfs/DecisionTree.cpp experimental_clfs/DecisionTree.cpp
experimental_clfs/AdaBoost.cpp
) )
target_link_libraries(b_list "${PyClassifiers}" bayesnet::bayesnet fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" Boost::python Boost::numpy "${XLSXWRITER_LIB}") target_link_libraries(b_list "${PyClassifiers}" bayesnet::bayesnet fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" Boost::python Boost::numpy "${XLSXWRITER_LIB}")
@@ -63,7 +64,7 @@ add_executable(b_main commands/b_main.cpp ${main_sources}
experimental_clfs/ExpClf.cpp experimental_clfs/ExpClf.cpp
experimental_clfs/ExpClf.cpp experimental_clfs/ExpClf.cpp
experimental_clfs/DecisionTree.cpp experimental_clfs/DecisionTree.cpp
experimental_clfs/AdaBoost.cpp
) )
target_link_libraries(b_main PRIVATE nlohmann_json::nlohmann_json "${PyClassifiers}" bayesnet::bayesnet fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" Boost::python Boost::numpy) target_link_libraries(b_main PRIVATE nlohmann_json::nlohmann_json "${PyClassifiers}" bayesnet::bayesnet fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" Boost::python Boost::numpy)

View File

@@ -11,11 +11,12 @@
#include <numeric> #include <numeric>
#include <sstream> #include <sstream>
#include <iomanip> #include <iomanip>
#include "TensorUtils.hpp"
namespace bayesnet { namespace bayesnet {
AdaBoost::AdaBoost(int n_estimators, int max_depth) AdaBoost::AdaBoost(int n_estimators, int max_depth)
: Ensemble(true), n_estimators(n_estimators), base_max_depth(max_depth) : Ensemble(true), n_estimators(n_estimators), base_max_depth(max_depth), n(0), n_classes(0)
{ {
validHyperparameters = { "n_estimators", "base_max_depth" }; validHyperparameters = { "n_estimators", "base_max_depth" };
} }
@@ -27,6 +28,10 @@ namespace bayesnet {
alphas.clear(); alphas.clear();
training_errors.clear(); training_errors.clear();
// Initialize n (number of features) and n_classes
n = dataset.size(0) - 1; // Exclude the label row
n_classes = states[className].size();
// Initialize sample weights uniformly // Initialize sample weights uniformly
int n_samples = dataset.size(1); int n_samples = dataset.size(1);
sample_weights = torch::ones({ n_samples }) / n_samples; sample_weights = torch::ones({ n_samples }) / n_samples;
@@ -37,6 +42,12 @@ namespace bayesnet {
normalizeWeights(); normalizeWeights();
} }
// Debug information
std::cout << "Starting AdaBoost training with " << n_estimators << " estimators" << std::endl;
std::cout << "Number of classes: " << n_classes << std::endl;
std::cout << "Number of features: " << n << std::endl;
std::cout << "Number of samples: " << n_samples << std::endl;
// Main AdaBoost training loop (SAMME algorithm) // Main AdaBoost training loop (SAMME algorithm)
for (int iter = 0; iter < n_estimators; ++iter) { for (int iter = 0; iter < n_estimators; ++iter) {
// Train base estimator with current sample weights // Train base estimator with current sample weights
@@ -46,9 +57,16 @@ namespace bayesnet {
double weighted_error = calculateWeightedError(estimator.get(), sample_weights); double weighted_error = calculateWeightedError(estimator.get(), sample_weights);
training_errors.push_back(weighted_error); training_errors.push_back(weighted_error);
// Debug output
std::cout << "Iteration " << iter + 1 << ":" << std::endl;
std::cout << " Weighted error: " << weighted_error << std::endl;
// Check if error is too high (worse than random guessing) // Check if error is too high (worse than random guessing)
double random_guess_error = 1.0 - (1.0 / getClassNumStates()); double random_guess_error = 1.0 - (1.0 / n_classes);
// According to SAMME, we need error < random_guess_error
if (weighted_error >= random_guess_error) { if (weighted_error >= random_guess_error) {
std::cout << " Error >= random guess (" << random_guess_error << "), stopping" << std::endl;
// If only one estimator and it's worse than random, keep it with zero weight // If only one estimator and it's worse than random, keep it with zero weight
if (models.empty()) { if (models.empty()) {
models.push_back(std::move(estimator)); models.push_back(std::move(estimator));
@@ -60,7 +78,9 @@ namespace bayesnet {
// Calculate alpha (estimator weight) using SAMME formula // Calculate alpha (estimator weight) using SAMME formula
// alpha = log((1 - err) / err) + log(K - 1) // alpha = log((1 - err) / err) + log(K - 1)
double alpha = std::log((1.0 - weighted_error) / weighted_error) + double alpha = std::log((1.0 - weighted_error) / weighted_error) +
std::log(static_cast<double>(getClassNumStates() - 1)); std::log(static_cast<double>(n_classes - 1));
std::cout << " Alpha: " << alpha << std::endl;
// Store the estimator and its weight // Store the estimator and its weight
models.push_back(std::move(estimator)); models.push_back(std::move(estimator));
@@ -74,42 +94,54 @@ namespace bayesnet {
// Check for perfect classification // Check for perfect classification
if (weighted_error < 1e-10) { if (weighted_error < 1e-10) {
std::cout << " Perfect classification achieved, stopping" << std::endl;
break; break;
} }
} }
// Set the number of models actually trained // Set the number of models actually trained
n_models = models.size(); n_models = models.size();
std::cout << "AdaBoost training completed with " << n_models << " models" << std::endl;
} }
void AdaBoost::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) void AdaBoost::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
{ {
// AdaBoost handles its own weight management, so we just build the model // Call buildModel which does the actual training
buildModel(weights); buildModel(weights);
fitted = true;
} }
std::unique_ptr<Classifier> AdaBoost::trainBaseEstimator(const torch::Tensor& weights) std::unique_ptr<Classifier> AdaBoost::trainBaseEstimator(const torch::Tensor& weights)
{ {
// Create a decision tree with specified max depth // Create a decision tree with specified max depth
// For AdaBoost, we typically use shallow trees (stumps with max_depth=1)
auto tree = std::make_unique<DecisionTree>(base_max_depth); auto tree = std::make_unique<DecisionTree>(base_max_depth);
// Ensure weights are properly normalized
auto normalized_weights = weights / weights.sum();
// Fit the tree with the current sample weights // Fit the tree with the current sample weights
tree->fit(dataset, features, className, states, weights, Smoothing_t::NONE); tree->fit(dataset, features, className, states, normalized_weights, Smoothing_t::NONE);
return tree; return tree;
} }
double AdaBoost::calculateWeightedError(Classifier* estimator, const torch::Tensor& weights) double AdaBoost::calculateWeightedError(Classifier* estimator, const torch::Tensor& weights)
{ {
// Get predictions from the estimator // Get features and labels from dataset
auto X = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), torch::indexing::Slice() }); auto X = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), torch::indexing::Slice() });
auto y_true = dataset.index({ -1, torch::indexing::Slice() }); auto y_true = dataset.index({ -1, torch::indexing::Slice() });
auto y_pred = estimator->predict(X.t());
// Get predictions from the estimator
auto y_pred = estimator->predict(X);
// Calculate weighted error // Calculate weighted error
auto incorrect = (y_pred != y_true).to(torch::kFloat); auto incorrect = (y_pred != y_true).to(torch::kFloat);
double weighted_error = torch::sum(incorrect * weights).item<double>();
// Ensure weights are normalized
auto normalized_weights = weights / weights.sum();
// Calculate weighted error
double weighted_error = torch::sum(incorrect * normalized_weights).item<double>();
return weighted_error; return weighted_error;
} }
@@ -119,7 +151,7 @@ namespace bayesnet {
// Get predictions from the estimator // Get predictions from the estimator
auto X = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), torch::indexing::Slice() }); auto X = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), torch::indexing::Slice() });
auto y_true = dataset.index({ -1, torch::indexing::Slice() }); auto y_true = dataset.index({ -1, torch::indexing::Slice() });
auto y_pred = estimator->predict(X.t()); auto y_pred = estimator->predict(X);
// Update weights according to SAMME algorithm // Update weights according to SAMME algorithm
// w_i = w_i * exp(alpha * I(y_i != y_pred_i)) // w_i = w_i * exp(alpha * I(y_i != y_pred_i))
@@ -187,6 +219,16 @@ namespace bayesnet {
return graph_lines; return graph_lines;
} }
void AdaBoost::checkValues() const
{
if (n_estimators <= 0) {
throw std::invalid_argument("n_estimators must be positive");
}
if (base_max_depth <= 0) {
throw std::invalid_argument("base_max_depth must be positive");
}
}
void AdaBoost::setHyperparameters(const nlohmann::json& hyperparameters_) void AdaBoost::setHyperparameters(const nlohmann::json& hyperparameters_)
{ {
auto hyperparameters = hyperparameters_; auto hyperparameters = hyperparameters_;
@@ -194,21 +236,209 @@ namespace bayesnet {
auto it = hyperparameters.find("n_estimators"); auto it = hyperparameters.find("n_estimators");
if (it != hyperparameters.end()) { if (it != hyperparameters.end()) {
n_estimators = it->get<int>(); n_estimators = it->get<int>();
if (n_estimators <= 0) { hyperparameters.erase("n_estimators");
throw std::invalid_argument("n_estimators must be positive");
}
hyperparameters.erase("n_estimators"); // Remove 'n_estimators' if present
} }
it = hyperparameters.find("base_max_depth"); it = hyperparameters.find("base_max_depth");
if (it != hyperparameters.end()) { if (it != hyperparameters.end()) {
base_max_depth = it->get<int>(); base_max_depth = it->get<int>();
if (base_max_depth <= 0) { hyperparameters.erase("base_max_depth");
throw std::invalid_argument("base_max_depth must be positive");
}
hyperparameters.erase("base_max_depth"); // Remove 'base_max_depth' if present
} }
checkValues();
Ensemble::setHyperparameters(hyperparameters); Ensemble::setHyperparameters(hyperparameters);
} }
torch::Tensor AdaBoost::predict(torch::Tensor& X)
{
if (!fitted) {
throw std::runtime_error(CLASSIFIER_NOT_FITTED);
}
if (models.empty()) {
throw std::runtime_error("No models have been trained");
}
// X should be (n_features, n_samples)
if (X.size(0) != n) {
throw std::runtime_error("Input has wrong number of features. Expected " +
std::to_string(n) + " but got " + std::to_string(X.size(0)));
}
int n_samples = X.size(1);
torch::Tensor predictions = torch::zeros({ n_samples }, torch::kInt32);
for (int i = 0; i < n_samples; i++) {
auto sample = X.index({ torch::indexing::Slice(), i });
predictions[i] = predictSample(sample);
}
return predictions;
}
torch::Tensor AdaBoost::predict_proba(torch::Tensor& X)
{
if (!fitted) {
throw std::runtime_error(CLASSIFIER_NOT_FITTED);
}
if (models.empty()) {
throw std::runtime_error("No models have been trained");
}
// X should be (n_features, n_samples)
if (X.size(0) != n) {
throw std::runtime_error("Input has wrong number of features. Expected " +
std::to_string(n) + " but got " + std::to_string(X.size(0)));
}
int n_samples = X.size(1);
torch::Tensor probabilities = torch::zeros({ n_samples, n_classes });
for (int i = 0; i < n_samples; i++) {
auto sample = X.index({ torch::indexing::Slice(), i });
probabilities[i] = predictProbaSample(sample);
}
return probabilities;
}
std::vector<int> AdaBoost::predict(std::vector<std::vector<int>>& X)
{
// Convert to tensor - X is samples x features, need to transpose
torch::Tensor X_tensor = platform::TensorUtils::to_matrix(X).t();
auto predictions = predict(X_tensor);
std::vector<int> result = platform::TensorUtils::to_vector<int>(predictions);
return result;
}
std::vector<std::vector<double>> AdaBoost::predict_proba(std::vector<std::vector<int>>& X)
{
auto n_samples = X.size();
// Convert to tensor - X is samples x features, need to transpose
torch::Tensor X_tensor = platform::TensorUtils::to_matrix(X).t();
auto proba_tensor = predict_proba(X_tensor);
std::vector<std::vector<double>> result(n_samples, std::vector<double>(n_classes, 0.0));
for (size_t i = 0; i < n_samples; i++) {
for (int j = 0; j < n_classes; j++) {
result[i][j] = proba_tensor[i][j].item<double>();
}
}
return result;
}
int AdaBoost::predictSample(const torch::Tensor& x) const
{
if (!fitted) {
throw std::runtime_error(CLASSIFIER_NOT_FITTED);
}
if (models.empty()) {
throw std::runtime_error("No models have been trained");
}
// x should be a 1D tensor with n features
if (x.size(0) != n) {
throw std::runtime_error("Input sample has wrong number of features. Expected " +
std::to_string(n) + " but got " + std::to_string(x.size(0)));
}
// Initialize class votes
std::vector<double> class_votes(n_classes, 0.0);
// Accumulate weighted votes from all estimators
for (size_t i = 0; i < models.size(); i++) {
if (alphas[i] <= 0) continue; // Skip estimators with zero or negative weight
try {
// Create a matrix with the sample as a column vector
auto x_matrix = x.unsqueeze(1); // Shape: (n_features, 1)
// Get prediction from this estimator
auto prediction = models[i]->predict(x_matrix);
int predicted_class = prediction[0].item<int>();
// Add weighted vote for this class
if (predicted_class >= 0 && predicted_class < n_classes) {
class_votes[predicted_class] += alphas[i];
}
}
catch (const std::exception& e) {
std::cerr << "Error in estimator " << i << ": " << e.what() << std::endl;
continue;
}
}
// Return class with highest weighted vote
return std::distance(class_votes.begin(),
std::max_element(class_votes.begin(), class_votes.end()));
}
torch::Tensor AdaBoost::predictProbaSample(const torch::Tensor& x) const
{
if (!fitted) {
throw std::runtime_error(CLASSIFIER_NOT_FITTED);
}
if (models.empty()) {
throw std::runtime_error("No models have been trained");
}
// x should be a 1D tensor with n features
if (x.size(0) != n) {
throw std::runtime_error("Input sample has wrong number of features. Expected " +
std::to_string(n) + " but got " + std::to_string(x.size(0)));
}
// Initialize probability accumulator
torch::Tensor class_probs = torch::zeros({ n_classes }, torch::kDouble);
// Sum weighted probabilities from all estimators
double total_alpha = 0.0;
for (size_t i = 0; i < models.size(); i++) {
if (alphas[i] <= 0) continue; // Skip estimators with zero or negative weight
try {
// Create a matrix with the sample as a column vector
auto x_matrix = x.unsqueeze(1); // Shape: (n_features, 1)
// Get probability predictions from this estimator
auto proba = models[i]->predict_proba(x_matrix);
// Add weighted probabilities
for (int j = 0; j < n_classes; j++) {
class_probs[j] += alphas[i] * proba[0][j].item<double>();
}
total_alpha += alphas[i];
}
catch (const std::exception& e) {
std::cerr << "Error in estimator " << i << ": " << e.what() << std::endl;
continue;
}
}
// Normalize probabilities
if (total_alpha > 0) {
class_probs = class_probs / total_alpha;
} else {
// If no valid estimators, return uniform distribution
class_probs.fill_(1.0 / n_classes);
}
// Ensure probabilities are valid (non-negative and sum to 1)
class_probs = torch::clamp(class_probs, 0.0, 1.0);
double sum_probs = torch::sum(class_probs).item<double>();
if (sum_probs > 1e-15) {
class_probs = class_probs / sum_probs;
} else {
class_probs.fill_(1.0 / n_classes);
}
return class_probs.to(torch::kFloat); // Convert back to float for consistency
}
} // namespace bayesnet } // namespace bayesnet

View File

@@ -21,9 +21,9 @@ namespace bayesnet {
std::vector<std::string> graph(const std::string& title = "") const override; std::vector<std::string> graph(const std::string& title = "") const override;
// AdaBoost specific methods // AdaBoost specific methods
void setNEstimators(int n_estimators) { this->n_estimators = n_estimators; } void setNEstimators(int n_estimators) { this->n_estimators = n_estimators; checkValues(); }
int getNEstimators() const { return n_estimators; } int getNEstimators() const { return n_estimators; }
void setBaseMaxDepth(int depth) { this->base_max_depth = depth; } void setBaseMaxDepth(int depth) { this->base_max_depth = depth; checkValues(); }
int getBaseMaxDepth() const { return base_max_depth; } int getBaseMaxDepth() const { return base_max_depth; }
// Get the weight of each base estimator // Get the weight of each base estimator
@@ -35,6 +35,11 @@ namespace bayesnet {
// Override setHyperparameters from BaseClassifier // Override setHyperparameters from BaseClassifier
void setHyperparameters(const nlohmann::json& hyperparameters) override; void setHyperparameters(const nlohmann::json& hyperparameters) override;
torch::Tensor predict(torch::Tensor& X) override;
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override;
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X);
protected: protected:
void buildModel(const torch::Tensor& weights) override; void buildModel(const torch::Tensor& weights) override;
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override; void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
@@ -45,6 +50,8 @@ namespace bayesnet {
std::vector<double> alphas; // Weight of each base estimator std::vector<double> alphas; // Weight of each base estimator
std::vector<double> training_errors; // Training error at each iteration std::vector<double> training_errors; // Training error at each iteration
torch::Tensor sample_weights; // Current sample weights torch::Tensor sample_weights; // Current sample weights
int n_classes; // Number of classes in the target variable
int n; // Number of features
// Train a single base estimator // Train a single base estimator
std::unique_ptr<Classifier> trainBaseEstimator(const torch::Tensor& weights); std::unique_ptr<Classifier> trainBaseEstimator(const torch::Tensor& weights);
@@ -57,6 +64,15 @@ namespace bayesnet {
// Normalize weights to sum to 1 // Normalize weights to sum to 1
void normalizeWeights(); void normalizeWeights();
// Check if hyperparameters values are valid
void checkValues() const;
// Make predictions for a single sample
int predictSample(const torch::Tensor& x) const;
// Make probabilistic predictions for a single sample
torch::Tensor predictProbaSample(const torch::Tensor& x) const;
}; };
} }

View File

@@ -327,30 +327,6 @@ namespace bayesnet {
return predictions; return predictions;
} }
void dumpTensor(const torch::Tensor& tensor, const std::string& name)
{
std::cout << name << ": " << std::endl;
for (int i = 0; i < tensor.size(0); i++) {
std::cout << "[";
for (int j = 0; j < tensor.size(1); j++) {
std::cout << tensor[i][j].item<int>() << " ";
}
std::cout << "]" << std::endl;
}
std::cout << std::endl;
}
void dumpVector(const std::vector<std::vector<int>>& vec, const std::string& name)
{
std::cout << name << ": " << std::endl;;
for (const auto& row : vec) {
std::cout << "[";
for (const auto& val : row) {
std::cout << val << " ";
}
std::cout << "] " << std::endl;
}
std::cout << std::endl;
}
std::vector<int> DecisionTree::predict(std::vector<std::vector<int>>& X) std::vector<int> DecisionTree::predict(std::vector<std::vector<int>>& X)
{ {

View File

@@ -30,6 +30,9 @@ namespace bayesnet {
void setMaxDepth(int depth) { max_depth = depth; checkValues(); } void setMaxDepth(int depth) { max_depth = depth; checkValues(); }
void setMinSamplesSplit(int samples) { min_samples_split = samples; checkValues(); } void setMinSamplesSplit(int samples) { min_samples_split = samples; checkValues(); }
void setMinSamplesLeaf(int samples) { min_samples_leaf = samples; checkValues(); } void setMinSamplesLeaf(int samples) { min_samples_leaf = samples; checkValues(); }
int getMaxDepth() const { return max_depth; }
int getMinSamplesSplit() const { return min_samples_split; }
int getMinSamplesLeaf() const { return min_samples_leaf; }
// Override setHyperparameters // Override setHyperparameters
void setHyperparameters(const nlohmann::json& hyperparameters) override; void setHyperparameters(const nlohmann::json& hyperparameters) override;
@@ -39,6 +42,12 @@ namespace bayesnet {
torch::Tensor predict_proba(torch::Tensor& X) override; torch::Tensor predict_proba(torch::Tensor& X) override;
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X); std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X);
// Make predictions for a single sample
int predictSample(const torch::Tensor& x) const;
// Make probabilistic predictions for a single sample
torch::Tensor predictProbaSample(const torch::Tensor& x) const;
protected: protected:
void buildModel(const torch::Tensor& weights) override; void buildModel(const torch::Tensor& weights) override;
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override
@@ -88,11 +97,7 @@ namespace bayesnet {
const torch::Tensor& sample_weights const torch::Tensor& sample_weights
); );
// Make predictions for a single sample
int predictSample(const torch::Tensor& x) const;
// Make probabilistic predictions for a single sample
torch::Tensor predictProbaSample(const torch::Tensor& x) const;
// Traverse tree to find leaf node // Traverse tree to find leaf node
const TreeNode* traverseTree(const torch::Tensor& x, const TreeNode* node) const; const TreeNode* traverseTree(const torch::Tensor& x, const TreeNode* node) const;

View File

@@ -26,7 +26,7 @@
#include <pyclassifiers/AdaBoostPy.h> #include <pyclassifiers/AdaBoostPy.h>
#include <pyclassifiers/RandomForest.h> #include <pyclassifiers/RandomForest.h>
#include "../experimental_clfs/XA1DE.h" #include "../experimental_clfs/XA1DE.h"
// #include "../experimental_clfs/AdaBoost.h" #include "../experimental_clfs/AdaBoost.h"
#include "../experimental_clfs/DecisionTree.h" #include "../experimental_clfs/DecisionTree.h"
namespace platform { namespace platform {

View File

@@ -37,8 +37,8 @@ namespace platform {
[](void) -> bayesnet::BaseClassifier* { return new pywrap::XGBoost();}); [](void) -> bayesnet::BaseClassifier* { return new pywrap::XGBoost();});
static Registrar registrarAdaPy("AdaBoostPy", static Registrar registrarAdaPy("AdaBoostPy",
[](void) -> bayesnet::BaseClassifier* { return new pywrap::AdaBoostPy();}); [](void) -> bayesnet::BaseClassifier* { return new pywrap::AdaBoostPy();});
// static Registrar registrarAda("AdaBoost", static Registrar registrarAda("AdaBoost",
// [](void) -> bayesnet::BaseClassifier* { return new bayesnet::AdaBoost();}); [](void) -> bayesnet::BaseClassifier* { return new bayesnet::AdaBoost();});
static Registrar registrarDT("DecisionTree", static Registrar registrarDT("DecisionTree",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::DecisionTree();}); [](void) -> bayesnet::BaseClassifier* { return new bayesnet::DecisionTree();});
static Registrar registrarXSPODE("XSPODE", static Registrar registrarXSPODE("XSPODE",

View File

@@ -12,9 +12,11 @@ if(ENABLE_TESTING)
${Bayesnet_INCLUDE_DIRS} ${Bayesnet_INCLUDE_DIRS}
) )
set(TEST_SOURCES_PLATFORM set(TEST_SOURCES_PLATFORM
TestUtils.cpp TestPlatform.cpp TestResult.cpp TestScores.cpp TestDecisionTree.cpp TestUtils.cpp TestPlatform.cpp TestResult.cpp TestScores.cpp TestDecisionTree.cpp TestAdaBoost.cpp
${Platform_SOURCE_DIR}/src/common/Datasets.cpp ${Platform_SOURCE_DIR}/src/common/Dataset.cpp ${Platform_SOURCE_DIR}/src/common/Discretization.cpp ${Platform_SOURCE_DIR}/src/common/Datasets.cpp ${Platform_SOURCE_DIR}/src/common/Dataset.cpp ${Platform_SOURCE_DIR}/src/common/Discretization.cpp
${Platform_SOURCE_DIR}/src/main/Scores.cpp ${Platform_SOURCE_DIR}/src/experimental_clfs/DecisionTree.cpp ${Platform_SOURCE_DIR}/src/main/Scores.cpp
${Platform_SOURCE_DIR}/src/experimental_clfs/DecisionTree.cpp
${Platform_SOURCE_DIR}/src/experimental_clfs/AdaBoost.cpp
) )
add_executable(${TEST_PLATFORM} ${TEST_SOURCES_PLATFORM}) add_executable(${TEST_PLATFORM} ${TEST_SOURCES_PLATFORM})
target_link_libraries(${TEST_PLATFORM} PUBLIC "${TORCH_LIBRARIES}" fimdlp Catch2::Catch2WithMain bayesnet) target_link_libraries(${TEST_PLATFORM} PUBLIC "${TORCH_LIBRARIES}" fimdlp Catch2::Catch2WithMain bayesnet)

707
tests/TestAdaBoost.cpp Normal file
View File

@@ -0,0 +1,707 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/matchers/catch_matchers_string.hpp>
#include <catch2/matchers/catch_matchers_vector.hpp>
#include <torch/torch.h>
#include <memory>
#include <stdexcept>
#include "experimental_clfs/AdaBoost.h"
#include "experimental_clfs/DecisionTree.h"
#include "TestUtils.h"
using namespace bayesnet;
using namespace Catch::Matchers;
TEST_CASE("AdaBoost Construction", "[AdaBoost]")
{
SECTION("Default constructor")
{
REQUIRE_NOTHROW(AdaBoost());
}
SECTION("Constructor with parameters")
{
REQUIRE_NOTHROW(AdaBoost(100, 2));
}
SECTION("Constructor parameter access")
{
AdaBoost ada(75, 3);
REQUIRE(ada.getNEstimators() == 75);
REQUIRE(ada.getBaseMaxDepth() == 3);
}
}
TEST_CASE("AdaBoost Hyperparameter Setting", "[AdaBoost]")
{
AdaBoost ada;
SECTION("Set individual hyperparameters")
{
REQUIRE_NOTHROW(ada.setNEstimators(100));
REQUIRE_NOTHROW(ada.setBaseMaxDepth(5));
REQUIRE(ada.getNEstimators() == 100);
REQUIRE(ada.getBaseMaxDepth() == 5);
}
SECTION("Set hyperparameters via JSON")
{
nlohmann::json params;
params["n_estimators"] = 80;
params["base_max_depth"] = 4;
REQUIRE_NOTHROW(ada.setHyperparameters(params));
}
SECTION("Invalid hyperparameters should throw")
{
nlohmann::json params;
// Negative n_estimators
params["n_estimators"] = -1;
REQUIRE_THROWS_AS(ada.setHyperparameters(params), std::invalid_argument);
// Zero n_estimators
params["n_estimators"] = 0;
REQUIRE_THROWS_AS(ada.setHyperparameters(params), std::invalid_argument);
// Negative base_max_depth
params["n_estimators"] = 50;
params["base_max_depth"] = -1;
REQUIRE_THROWS_AS(ada.setHyperparameters(params), std::invalid_argument);
// Zero base_max_depth
params["base_max_depth"] = 0;
REQUIRE_THROWS_AS(ada.setHyperparameters(params), std::invalid_argument);
}
}
TEST_CASE("AdaBoost Basic Functionality", "[AdaBoost]")
{
// Create a simple dataset
int n_samples = 20;
int n_features = 2;
std::vector<std::vector<int>> X(n_features, std::vector<int>(n_samples));
std::vector<int> y(n_samples);
// Simple pattern: class depends on first feature
for (int i = 0; i < n_samples; i++) {
X[0][i] = i < 10 ? 0 : 1;
X[1][i] = i % 2;
y[i] = X[0][i]; // Class equals first feature
}
std::vector<std::string> features = { "f1", "f2" };
std::string className = "class";
std::map<std::string, std::vector<int>> states;
states["f1"] = { 0, 1 };
states["f2"] = { 0, 1 };
states["class"] = { 0, 1 };
SECTION("Training with vector interface")
{
AdaBoost ada(10, 3); // 10 estimators, max_depth = 3
REQUIRE_NOTHROW(ada.fit(X, y, features, className, states, Smoothing_t::NONE));
// Check that we have the expected number of models
auto weights = ada.getEstimatorWeights();
REQUIRE(weights.size() <= 10); // Should be <= n_estimators
REQUIRE(weights.size() > 0); // Should have at least one model
// Check training errors
auto errors = ada.getTrainingErrors();
REQUIRE(errors.size() == weights.size());
// All training errors should be less than 0.5 for this simple dataset
for (double error : errors) {
REQUIRE(error < 0.5);
REQUIRE(error >= 0.0);
}
}
SECTION("Prediction before fitting")
{
AdaBoost ada;
REQUIRE_THROWS_WITH(ada.predict(X),
ContainsSubstring("not been fitted"));
REQUIRE_THROWS_WITH(ada.predict_proba(X),
ContainsSubstring("not been fitted"));
}
SECTION("Prediction with vector interface")
{
AdaBoost ada(10, 3);
ada.fit(X, y, features, className, states, Smoothing_t::NONE);
auto predictions = ada.predict(X);
REQUIRE(predictions.size() == static_cast<size_t>(n_samples));
}
SECTION("Probability predictions with vector interface")
{
AdaBoost ada(10, 3);
ada.fit(X, y, features, className, states, Smoothing_t::NONE);
auto proba = ada.predict_proba(X);
REQUIRE(proba.size() == static_cast<size_t>(n_samples));
REQUIRE(proba[0].size() == 2); // Two classes
// Check probabilities sum to 1 and are valid
auto predictions = ada.predict(X);
for (size_t i = 0; i < proba.size(); i++) {
auto p = proba[i];
auto pred = predictions[i];
REQUIRE(p.size() == 2);
REQUIRE(p[0] >= 0.0);
REQUIRE(p[1] >= 0.0);
double sum = p[0] + p[1];
REQUIRE(sum == Catch::Approx(1.0).epsilon(1e-6));
// Check that predict_proba matches the expected predict value
REQUIRE(pred == (p[0] > p[1] ? 0 : 1));
}
}
}
TEST_CASE("AdaBoost Tensor Interface", "[AdaBoost]")
{
auto raw = RawDatasets("iris", true);
SECTION("Training with tensor format")
{
AdaBoost ada(20, 3);
INFO("Dataset shape: " << raw.dataset.sizes());
INFO("Features: " << raw.featurest.size());
INFO("Samples: " << raw.nSamples);
// AdaBoost expects dataset in format: features x samples, with labels as last row
REQUIRE_NOTHROW(ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, Smoothing_t::NONE));
// Test prediction with tensor
auto predictions = ada.predict(raw.Xt);
REQUIRE(predictions.size(0) == raw.yt.size(0));
// Calculate accuracy
auto correct = torch::sum(predictions == raw.yt).item<int>();
double accuracy = static_cast<double>(correct) / raw.yt.size(0);
REQUIRE(accuracy > 0.85); // Should achieve good accuracy on Iris
// Test probability predictions with tensor
auto proba = ada.predict_proba(raw.Xt);
REQUIRE(proba.size(0) == raw.yt.size(0));
REQUIRE(proba.size(1) == 3); // Three classes in Iris
// Check probabilities sum to 1
auto prob_sums = torch::sum(proba, 1);
for (int i = 0; i < prob_sums.size(0); i++) {
REQUIRE(prob_sums[i].item<double>() == Catch::Approx(1.0).epsilon(1e-6));
}
}
}
TEST_CASE("AdaBoost on Iris Dataset", "[AdaBoost][iris]")
{
auto raw = RawDatasets("iris", true);
SECTION("Training with vector interface")
{
AdaBoost ada(30, 3);
REQUIRE_NOTHROW(ada.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv, Smoothing_t::NONE));
auto predictions = ada.predict(raw.Xv);
REQUIRE(predictions.size() == raw.yv.size());
// Calculate accuracy
int correct = 0;
for (size_t i = 0; i < predictions.size(); i++) {
if (predictions[i] == raw.yv[i]) correct++;
}
double accuracy = static_cast<double>(correct) / raw.yv.size();
REQUIRE(accuracy > 0.85); // Should achieve good accuracy
// Test probability predictions
auto proba = ada.predict_proba(raw.Xv);
REQUIRE(proba.size() == raw.yv.size());
REQUIRE(proba[0].size() == 3); // Three classes
// Verify estimator weights and errors
auto weights = ada.getEstimatorWeights();
auto errors = ada.getTrainingErrors();
REQUIRE(weights.size() == errors.size());
REQUIRE(weights.size() > 0);
// All weights should be positive (for non-zero error estimators)
for (double w : weights) {
REQUIRE(w >= 0.0);
}
// All errors should be less than 0.5 (better than random)
for (double e : errors) {
REQUIRE(e < 0.5);
REQUIRE(e >= 0.0);
}
}
SECTION("Different number of estimators")
{
std::vector<int> n_estimators = { 5, 15, 25 };
for (int n_est : n_estimators) {
AdaBoost ada(n_est, 2);
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, Smoothing_t::NONE);
auto predictions = ada.predict(raw.Xt);
REQUIRE(predictions.size(0) == raw.yt.size(0));
// Check that we don't exceed the specified number of estimators
auto weights = ada.getEstimatorWeights();
REQUIRE(static_cast<int>(weights.size()) <= n_est);
}
}
SECTION("Different base estimator depths")
{
std::vector<int> depths = { 1, 2, 4 };
for (int depth : depths) {
AdaBoost ada(15, depth);
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, Smoothing_t::NONE);
auto predictions = ada.predict(raw.Xt);
REQUIRE(predictions.size(0) == raw.yt.size(0));
}
}
}
TEST_CASE("AdaBoost Edge Cases", "[AdaBoost]")
{
auto raw = RawDatasets("iris", true);
SECTION("Single estimator (depth 1 stump)")
{
AdaBoost ada(1, 1); // Single decision stump
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, Smoothing_t::NONE);
auto predictions = ada.predict(raw.Xt);
REQUIRE(predictions.size(0) == raw.yt.size(0));
auto weights = ada.getEstimatorWeights();
REQUIRE(weights.size() == 1);
}
SECTION("Perfect classifier scenario")
{
// Create a perfectly separable dataset
std::vector<std::vector<int>> X = { {0,0,1,1}, {0,1,0,1} };
std::vector<int> y = { 0, 0, 1, 1 };
std::vector<std::string> features = { "f1", "f2" };
std::string className = "class";
std::map<std::string, std::vector<int>> states;
states["f1"] = { 0, 1 };
states["f2"] = { 0, 1 };
states["class"] = { 0, 1 };
AdaBoost ada(10, 3);
ada.fit(X, y, features, className, states, Smoothing_t::NONE);
auto predictions = ada.predict(X);
REQUIRE(predictions.size() == 4);
// Should achieve perfect accuracy
int correct = 0;
for (size_t i = 0; i < predictions.size(); i++) {
if (predictions[i] == y[i]) correct++;
}
REQUIRE(correct == 4);
// Should stop early due to perfect classification
auto errors = ada.getTrainingErrors();
if (errors.size() > 0) {
REQUIRE(errors.back() < 1e-10); // Very low error
}
}
SECTION("Small dataset")
{
// Very small dataset
std::vector<std::vector<int>> X = { {0,1}, {1,0} };
std::vector<int> y = { 0, 1 };
std::vector<std::string> features = { "f1", "f2" };
std::string className = "class";
std::map<std::string, std::vector<int>> states;
states["f1"] = { 0, 1 };
states["f2"] = { 0, 1 };
states["class"] = { 0, 1 };
AdaBoost ada(5, 1);
REQUIRE_NOTHROW(ada.fit(X, y, features, className, states, Smoothing_t::NONE));
auto predictions = ada.predict(X);
REQUIRE(predictions.size() == 2);
}
}
TEST_CASE("AdaBoost Graph Visualization", "[AdaBoost]")
{
// Simple dataset for visualization
std::vector<std::vector<int>> X = { {0,0,1,1}, {0,1,0,1} };
std::vector<int> y = { 0, 1, 1, 0 }; // XOR pattern
std::vector<std::string> features = { "x1", "x2" };
std::string className = "xor";
std::map<std::string, std::vector<int>> states;
states["x1"] = { 0, 1 };
states["x2"] = { 0, 1 };
states["xor"] = { 0, 1 };
SECTION("Graph generation")
{
AdaBoost ada(5, 2);
ada.fit(X, y, features, className, states, Smoothing_t::NONE);
auto graph_lines = ada.graph();
REQUIRE(graph_lines.size() > 2);
REQUIRE(graph_lines.front() == "digraph AdaBoost {");
REQUIRE(graph_lines.back() == "}");
// Should contain base estimator references
bool has_estimators = false;
for (const auto& line : graph_lines) {
if (line.find("Estimator") != std::string::npos) {
has_estimators = true;
break;
}
}
REQUIRE(has_estimators);
// Should contain alpha values
bool has_alpha = false;
for (const auto& line : graph_lines) {
if (line.find("α") != std::string::npos || line.find("alpha") != std::string::npos) {
has_alpha = true;
break;
}
}
REQUIRE(has_alpha);
}
SECTION("Graph with title")
{
AdaBoost ada(3, 1);
ada.fit(X, y, features, className, states, Smoothing_t::NONE);
auto graph_lines = ada.graph("XOR AdaBoost");
bool has_title = false;
for (const auto& line : graph_lines) {
if (line.find("label=\"XOR AdaBoost\"") != std::string::npos) {
has_title = true;
break;
}
}
REQUIRE(has_title);
}
}
TEST_CASE("AdaBoost with Weights", "[AdaBoost]")
{
auto raw = RawDatasets("iris", true);
SECTION("Uniform weights")
{
AdaBoost ada(20, 3);
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, raw.weights, Smoothing_t::NONE);
auto predictions = ada.predict(raw.Xt);
REQUIRE(predictions.size(0) == raw.yt.size(0));
auto weights = ada.getEstimatorWeights();
REQUIRE(weights.size() > 0);
}
SECTION("Non-uniform weights")
{
auto weights = torch::ones({ raw.nSamples });
weights.index({ torch::indexing::Slice(0, 50) }) *= 3.0; // Emphasize first class
weights = weights / weights.sum();
AdaBoost ada(15, 2);
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, weights, Smoothing_t::NONE);
auto predictions = ada.predict(raw.Xt);
REQUIRE(predictions.size(0) == raw.yt.size(0));
// Check that training completed successfully
auto estimator_weights = ada.getEstimatorWeights();
auto errors = ada.getTrainingErrors();
REQUIRE(estimator_weights.size() == errors.size());
REQUIRE(estimator_weights.size() > 0);
}
}
TEST_CASE("AdaBoost Input Dimension Validation", "[AdaBoost]")
{
auto raw = RawDatasets("iris", true);
SECTION("Correct input dimensions")
{
AdaBoost ada(10, 2);
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, Smoothing_t::NONE);
// Test with correct tensor dimensions (features x samples)
REQUIRE_NOTHROW(ada.predict(raw.Xt));
REQUIRE_NOTHROW(ada.predict_proba(raw.Xt));
// Test with correct vector dimensions (features x samples)
REQUIRE_NOTHROW(ada.predict(raw.Xv));
REQUIRE_NOTHROW(ada.predict_proba(raw.Xv));
}
SECTION("Dimension consistency between interfaces")
{
AdaBoost ada(10, 2);
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, Smoothing_t::NONE);
// Get predictions from both interfaces
auto tensor_predictions = ada.predict(raw.Xt);
auto vector_predictions = ada.predict(raw.Xv);
// Should have same number of predictions
REQUIRE(tensor_predictions.size(0) == static_cast<int>(vector_predictions.size()));
// Test probability predictions
auto tensor_proba = ada.predict_proba(raw.Xt);
auto vector_proba = ada.predict_proba(raw.Xv);
REQUIRE(tensor_proba.size(0) == static_cast<int>(vector_proba.size()));
REQUIRE(tensor_proba.size(1) == static_cast<int>(vector_proba[0].size()));
// Verify predictions match between interfaces
for (int i = 0; i < tensor_predictions.size(0); i++) {
REQUIRE(tensor_predictions[i].item<int>() == vector_predictions[i]);
// Verify probabilities match between interfaces
for (int j = 0; j < tensor_proba.size(1); j++) {
REQUIRE(tensor_proba[i][j].item<double>() == Catch::Approx(vector_proba[i][j]).epsilon(1e-10));
}
}
}
}
TEST_CASE("AdaBoost Debug - Simple Dataset Analysis", "[AdaBoost][debug]")
{
// Create the exact same simple dataset that was failing
int n_samples = 20;
int n_features = 2;
std::vector<std::vector<int>> X(n_features, std::vector<int>(n_samples));
std::vector<int> y(n_samples);
// Simple pattern: class depends on first feature
for (int i = 0; i < n_samples; i++) {
X[0][i] = i < 10 ? 0 : 1;
X[1][i] = i % 2;
y[i] = X[0][i]; // Class equals first feature
}
std::vector<std::string> features = { "f1", "f2" };
std::string className = "class";
std::map<std::string, std::vector<int>> states;
states["f1"] = { 0, 1 };
states["f2"] = { 0, 1 };
states["class"] = { 0, 1 };
SECTION("Debug training process")
{
AdaBoost ada(5, 3); // Few estimators for debugging
// This should work perfectly on this simple dataset
REQUIRE_NOTHROW(ada.fit(X, y, features, className, states, Smoothing_t::NONE));
// Get training details
auto weights = ada.getEstimatorWeights();
auto errors = ada.getTrainingErrors();
INFO("Number of models trained: " << weights.size());
INFO("Training errors: ");
for (size_t i = 0; i < errors.size(); i++) {
INFO(" Model " << i << ": error=" << errors[i] << ", weight=" << weights[i]);
}
// Should have at least one model
REQUIRE(weights.size() > 0);
REQUIRE(errors.size() == weights.size());
// All training errors should be reasonable for this simple dataset
for (double error : errors) {
REQUIRE(error >= 0.0);
REQUIRE(error < 0.5); // Should be better than random
}
// Test predictions
auto predictions = ada.predict(X);
REQUIRE(predictions.size() == static_cast<size_t>(n_samples));
// Calculate accuracy
int correct = 0;
for (size_t i = 0; i < predictions.size(); i++) {
if (predictions[i] == y[i]) correct++;
INFO("Sample " << i << ": predicted=" << predictions[i] << ", actual=" << y[i]);
}
double accuracy = static_cast<double>(correct) / n_samples;
INFO("Accuracy: " << accuracy);
// Should achieve high accuracy on this perfectly separable dataset
REQUIRE(accuracy >= 0.9); // Lower threshold for debugging
// Test probability predictions
auto proba = ada.predict_proba(X);
REQUIRE(proba.size() == static_cast<size_t>(n_samples));
// Verify probabilities are valid
for (size_t i = 0; i < proba.size(); i++) {
auto p = proba[i];
REQUIRE(p.size() == 2);
REQUIRE(p[0] >= 0.0);
REQUIRE(p[1] >= 0.0);
double sum = p[0] + p[1];
REQUIRE(sum == Catch::Approx(1.0).epsilon(1e-6));
// Predicted class should match highest probability
int pred_class = predictions[i];
REQUIRE(pred_class == (p[0] > p[1] ? 0 : 1));
}
}
SECTION("Compare with single DecisionTree")
{
// Test that AdaBoost performs at least as well as a single tree
DecisionTree single_tree(3, 2, 1);
single_tree.fit(X, y, features, className, states, Smoothing_t::NONE);
auto tree_predictions = single_tree.predict(X);
int tree_correct = 0;
for (size_t i = 0; i < tree_predictions.size(); i++) {
if (tree_predictions[i] == y[i]) tree_correct++;
}
double tree_accuracy = static_cast<double>(tree_correct) / n_samples;
AdaBoost ada(5, 3);
ada.fit(X, y, features, className, states, Smoothing_t::NONE);
auto ada_predictions = ada.predict(X);
int ada_correct = 0;
for (size_t i = 0; i < ada_predictions.size(); i++) {
if (ada_predictions[i] == y[i]) ada_correct++;
}
double ada_accuracy = static_cast<double>(ada_correct) / n_samples;
INFO("DecisionTree accuracy: " << tree_accuracy);
INFO("AdaBoost accuracy: " << ada_accuracy);
// AdaBoost should perform at least as well as single tree
// (allowing small tolerance for numerical differences)
REQUIRE(ada_accuracy >= tree_accuracy - 0.1);
}
}
TEST_CASE("AdaBoost SAMME Algorithm Validation", "[AdaBoost]")
{
auto raw = RawDatasets("iris", true);
SECTION("Prediction consistency with probabilities")
{
AdaBoost ada(15, 3);
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, Smoothing_t::NONE);
auto predictions = ada.predict(raw.Xt);
auto probabilities = ada.predict_proba(raw.Xt);
REQUIRE(predictions.size(0) == probabilities.size(0));
REQUIRE(probabilities.size(1) == 3); // Three classes in Iris
// For each sample, predicted class should correspond to highest probability
for (int i = 0; i < predictions.size(0); i++) {
int predicted_class = predictions[i].item<int>();
auto probs = probabilities[i];
// Find class with highest probability
auto max_prob_idx = torch::argmax(probs).item<int>();
// Predicted class should match class with highest probability
REQUIRE(predicted_class == max_prob_idx);
// Probabilities should sum to 1
double sum_probs = torch::sum(probs).item<double>();
REQUIRE(sum_probs == Catch::Approx(1.0).epsilon(1e-6));
// All probabilities should be non-negative
for (int j = 0; j < 3; j++) {
REQUIRE(probs[j].item<double>() >= 0.0);
REQUIRE(probs[j].item<double>() <= 1.0);
}
}
}
SECTION("Weighted voting verification")
{
// Simple dataset where we can verify the weighted voting
std::vector<std::vector<int>> X = { {0,0,1,1}, {0,1,0,1} };
std::vector<int> y = { 0, 1, 1, 0 };
std::vector<std::string> features = { "f1", "f2" };
std::string className = "class";
std::map<std::string, std::vector<int>> states;
states["f1"] = { 0, 1 };
states["f2"] = { 0, 1 };
states["class"] = { 0, 1 };
AdaBoost ada(5, 2);
ada.fit(X, y, features, className, states, Smoothing_t::NONE);
auto predictions = ada.predict(X);
auto probabilities = ada.predict_proba(X);
auto alphas = ada.getEstimatorWeights();
REQUIRE(predictions.size() == 4);
REQUIRE(probabilities.size() == 4);
REQUIRE(probabilities[0].size() == 2); // Two classes
REQUIRE(alphas.size() > 0);
// Verify that estimator weights are reasonable
for (double alpha : alphas) {
REQUIRE(alpha >= 0.0); // Alphas should be non-negative
}
// Verify prediction-probability consistency
for (size_t i = 0; i < predictions.size(); i++) {
int pred = predictions[i];
auto probs = probabilities[i];
REQUIRE(pred == (probs[0] > probs[1] ? 0 : 1));
REQUIRE(probs[0] + probs[1] == Catch::Approx(1.0).epsilon(1e-6));
}
}
SECTION("Empty models edge case")
{
AdaBoost ada(1, 1);
// Try to predict before fitting
std::vector<std::vector<int>> X = { {0}, {1} };
REQUIRE_THROWS_WITH(ada.predict(X), ContainsSubstring("not been fitted"));
REQUIRE_THROWS_WITH(ada.predict_proba(X), ContainsSubstring("not been fitted"));
}
}

View File

@@ -39,6 +39,9 @@ TEST_CASE("DecisionTree Hyperparameter Setting", "[DecisionTree]")
REQUIRE_NOTHROW(dt.setMaxDepth(10)); REQUIRE_NOTHROW(dt.setMaxDepth(10));
REQUIRE_NOTHROW(dt.setMinSamplesSplit(5)); REQUIRE_NOTHROW(dt.setMinSamplesSplit(5));
REQUIRE_NOTHROW(dt.setMinSamplesLeaf(2)); REQUIRE_NOTHROW(dt.setMinSamplesLeaf(2));
REQUIRE(dt.getMaxDepth() == 10);
REQUIRE(dt.getMinSamplesSplit() == 5);
REQUIRE(dt.getMinSamplesLeaf() == 2);
} }
SECTION("Set hyperparameters via JSON") SECTION("Set hyperparameters via JSON")
@@ -49,6 +52,9 @@ TEST_CASE("DecisionTree Hyperparameter Setting", "[DecisionTree]")
params["min_samples_leaf"] = 2; params["min_samples_leaf"] = 2;
REQUIRE_NOTHROW(dt.setHyperparameters(params)); REQUIRE_NOTHROW(dt.setHyperparameters(params));
REQUIRE(dt.getMaxDepth() == 7);
REQUIRE(dt.getMinSamplesSplit() == 4);
REQUIRE(dt.getMinSamplesLeaf() == 2);
} }
SECTION("Invalid hyperparameters should throw") SECTION("Invalid hyperparameters should throw")
@@ -164,7 +170,9 @@ TEST_CASE("DecisionTree on Iris Dataset", "[DecisionTree][iris]")
// Calculate accuracy // Calculate accuracy
auto correct = torch::sum(predictions == raw.yt).item<int>(); auto correct = torch::sum(predictions == raw.yt).item<int>();
double accuracy = static_cast<double>(correct) / raw.yt.size(0); double accuracy = static_cast<double>(correct) / raw.yt.size(0);
double acurracy_computed = dt.score(raw.Xt, raw.yt);
REQUIRE(accuracy > 0.97); // Reasonable accuracy for Iris REQUIRE(accuracy > 0.97); // Reasonable accuracy for Iris
REQUIRE(acurracy_computed == Catch::Approx(accuracy).epsilon(1e-6));
} }
SECTION("Training with vector interface") SECTION("Training with vector interface")