Begin AdaBoost integration

This commit is contained in:
2025-06-18 11:27:11 +02:00
parent 023d5613b4
commit 415a7ae608
10 changed files with 1001 additions and 56 deletions

View File

@@ -12,9 +12,11 @@ if(ENABLE_TESTING)
${Bayesnet_INCLUDE_DIRS}
)
set(TEST_SOURCES_PLATFORM
TestUtils.cpp TestPlatform.cpp TestResult.cpp TestScores.cpp TestDecisionTree.cpp
TestUtils.cpp TestPlatform.cpp TestResult.cpp TestScores.cpp TestDecisionTree.cpp TestAdaBoost.cpp
${Platform_SOURCE_DIR}/src/common/Datasets.cpp ${Platform_SOURCE_DIR}/src/common/Dataset.cpp ${Platform_SOURCE_DIR}/src/common/Discretization.cpp
${Platform_SOURCE_DIR}/src/main/Scores.cpp ${Platform_SOURCE_DIR}/src/experimental_clfs/DecisionTree.cpp
${Platform_SOURCE_DIR}/src/main/Scores.cpp
${Platform_SOURCE_DIR}/src/experimental_clfs/DecisionTree.cpp
${Platform_SOURCE_DIR}/src/experimental_clfs/AdaBoost.cpp
)
add_executable(${TEST_PLATFORM} ${TEST_SOURCES_PLATFORM})
target_link_libraries(${TEST_PLATFORM} PUBLIC "${TORCH_LIBRARIES}" fimdlp Catch2::Catch2WithMain bayesnet)

707
tests/TestAdaBoost.cpp Normal file
View File

@@ -0,0 +1,707 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/matchers/catch_matchers_string.hpp>
#include <catch2/matchers/catch_matchers_vector.hpp>
#include <torch/torch.h>
#include <memory>
#include <stdexcept>
#include "experimental_clfs/AdaBoost.h"
#include "experimental_clfs/DecisionTree.h"
#include "TestUtils.h"
using namespace bayesnet;
using namespace Catch::Matchers;
TEST_CASE("AdaBoost Construction", "[AdaBoost]")
{
SECTION("Default constructor")
{
REQUIRE_NOTHROW(AdaBoost());
}
SECTION("Constructor with parameters")
{
REQUIRE_NOTHROW(AdaBoost(100, 2));
}
SECTION("Constructor parameter access")
{
AdaBoost ada(75, 3);
REQUIRE(ada.getNEstimators() == 75);
REQUIRE(ada.getBaseMaxDepth() == 3);
}
}
TEST_CASE("AdaBoost Hyperparameter Setting", "[AdaBoost]")
{
AdaBoost ada;
SECTION("Set individual hyperparameters")
{
REQUIRE_NOTHROW(ada.setNEstimators(100));
REQUIRE_NOTHROW(ada.setBaseMaxDepth(5));
REQUIRE(ada.getNEstimators() == 100);
REQUIRE(ada.getBaseMaxDepth() == 5);
}
SECTION("Set hyperparameters via JSON")
{
nlohmann::json params;
params["n_estimators"] = 80;
params["base_max_depth"] = 4;
REQUIRE_NOTHROW(ada.setHyperparameters(params));
}
SECTION("Invalid hyperparameters should throw")
{
nlohmann::json params;
// Negative n_estimators
params["n_estimators"] = -1;
REQUIRE_THROWS_AS(ada.setHyperparameters(params), std::invalid_argument);
// Zero n_estimators
params["n_estimators"] = 0;
REQUIRE_THROWS_AS(ada.setHyperparameters(params), std::invalid_argument);
// Negative base_max_depth
params["n_estimators"] = 50;
params["base_max_depth"] = -1;
REQUIRE_THROWS_AS(ada.setHyperparameters(params), std::invalid_argument);
// Zero base_max_depth
params["base_max_depth"] = 0;
REQUIRE_THROWS_AS(ada.setHyperparameters(params), std::invalid_argument);
}
}
TEST_CASE("AdaBoost Basic Functionality", "[AdaBoost]")
{
// Create a simple dataset
int n_samples = 20;
int n_features = 2;
std::vector<std::vector<int>> X(n_features, std::vector<int>(n_samples));
std::vector<int> y(n_samples);
// Simple pattern: class depends on first feature
for (int i = 0; i < n_samples; i++) {
X[0][i] = i < 10 ? 0 : 1;
X[1][i] = i % 2;
y[i] = X[0][i]; // Class equals first feature
}
std::vector<std::string> features = { "f1", "f2" };
std::string className = "class";
std::map<std::string, std::vector<int>> states;
states["f1"] = { 0, 1 };
states["f2"] = { 0, 1 };
states["class"] = { 0, 1 };
SECTION("Training with vector interface")
{
AdaBoost ada(10, 3); // 10 estimators, max_depth = 3
REQUIRE_NOTHROW(ada.fit(X, y, features, className, states, Smoothing_t::NONE));
// Check that we have the expected number of models
auto weights = ada.getEstimatorWeights();
REQUIRE(weights.size() <= 10); // Should be <= n_estimators
REQUIRE(weights.size() > 0); // Should have at least one model
// Check training errors
auto errors = ada.getTrainingErrors();
REQUIRE(errors.size() == weights.size());
// All training errors should be less than 0.5 for this simple dataset
for (double error : errors) {
REQUIRE(error < 0.5);
REQUIRE(error >= 0.0);
}
}
SECTION("Prediction before fitting")
{
AdaBoost ada;
REQUIRE_THROWS_WITH(ada.predict(X),
ContainsSubstring("not been fitted"));
REQUIRE_THROWS_WITH(ada.predict_proba(X),
ContainsSubstring("not been fitted"));
}
SECTION("Prediction with vector interface")
{
AdaBoost ada(10, 3);
ada.fit(X, y, features, className, states, Smoothing_t::NONE);
auto predictions = ada.predict(X);
REQUIRE(predictions.size() == static_cast<size_t>(n_samples));
}
SECTION("Probability predictions with vector interface")
{
AdaBoost ada(10, 3);
ada.fit(X, y, features, className, states, Smoothing_t::NONE);
auto proba = ada.predict_proba(X);
REQUIRE(proba.size() == static_cast<size_t>(n_samples));
REQUIRE(proba[0].size() == 2); // Two classes
// Check probabilities sum to 1 and are valid
auto predictions = ada.predict(X);
for (size_t i = 0; i < proba.size(); i++) {
auto p = proba[i];
auto pred = predictions[i];
REQUIRE(p.size() == 2);
REQUIRE(p[0] >= 0.0);
REQUIRE(p[1] >= 0.0);
double sum = p[0] + p[1];
REQUIRE(sum == Catch::Approx(1.0).epsilon(1e-6));
// Check that predict_proba matches the expected predict value
REQUIRE(pred == (p[0] > p[1] ? 0 : 1));
}
}
}
TEST_CASE("AdaBoost Tensor Interface", "[AdaBoost]")
{
auto raw = RawDatasets("iris", true);
SECTION("Training with tensor format")
{
AdaBoost ada(20, 3);
INFO("Dataset shape: " << raw.dataset.sizes());
INFO("Features: " << raw.featurest.size());
INFO("Samples: " << raw.nSamples);
// AdaBoost expects dataset in format: features x samples, with labels as last row
REQUIRE_NOTHROW(ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, Smoothing_t::NONE));
// Test prediction with tensor
auto predictions = ada.predict(raw.Xt);
REQUIRE(predictions.size(0) == raw.yt.size(0));
// Calculate accuracy
auto correct = torch::sum(predictions == raw.yt).item<int>();
double accuracy = static_cast<double>(correct) / raw.yt.size(0);
REQUIRE(accuracy > 0.85); // Should achieve good accuracy on Iris
// Test probability predictions with tensor
auto proba = ada.predict_proba(raw.Xt);
REQUIRE(proba.size(0) == raw.yt.size(0));
REQUIRE(proba.size(1) == 3); // Three classes in Iris
// Check probabilities sum to 1
auto prob_sums = torch::sum(proba, 1);
for (int i = 0; i < prob_sums.size(0); i++) {
REQUIRE(prob_sums[i].item<double>() == Catch::Approx(1.0).epsilon(1e-6));
}
}
}
TEST_CASE("AdaBoost on Iris Dataset", "[AdaBoost][iris]")
{
auto raw = RawDatasets("iris", true);
SECTION("Training with vector interface")
{
AdaBoost ada(30, 3);
REQUIRE_NOTHROW(ada.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv, Smoothing_t::NONE));
auto predictions = ada.predict(raw.Xv);
REQUIRE(predictions.size() == raw.yv.size());
// Calculate accuracy
int correct = 0;
for (size_t i = 0; i < predictions.size(); i++) {
if (predictions[i] == raw.yv[i]) correct++;
}
double accuracy = static_cast<double>(correct) / raw.yv.size();
REQUIRE(accuracy > 0.85); // Should achieve good accuracy
// Test probability predictions
auto proba = ada.predict_proba(raw.Xv);
REQUIRE(proba.size() == raw.yv.size());
REQUIRE(proba[0].size() == 3); // Three classes
// Verify estimator weights and errors
auto weights = ada.getEstimatorWeights();
auto errors = ada.getTrainingErrors();
REQUIRE(weights.size() == errors.size());
REQUIRE(weights.size() > 0);
// All weights should be positive (for non-zero error estimators)
for (double w : weights) {
REQUIRE(w >= 0.0);
}
// All errors should be less than 0.5 (better than random)
for (double e : errors) {
REQUIRE(e < 0.5);
REQUIRE(e >= 0.0);
}
}
SECTION("Different number of estimators")
{
std::vector<int> n_estimators = { 5, 15, 25 };
for (int n_est : n_estimators) {
AdaBoost ada(n_est, 2);
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, Smoothing_t::NONE);
auto predictions = ada.predict(raw.Xt);
REQUIRE(predictions.size(0) == raw.yt.size(0));
// Check that we don't exceed the specified number of estimators
auto weights = ada.getEstimatorWeights();
REQUIRE(static_cast<int>(weights.size()) <= n_est);
}
}
SECTION("Different base estimator depths")
{
std::vector<int> depths = { 1, 2, 4 };
for (int depth : depths) {
AdaBoost ada(15, depth);
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, Smoothing_t::NONE);
auto predictions = ada.predict(raw.Xt);
REQUIRE(predictions.size(0) == raw.yt.size(0));
}
}
}
TEST_CASE("AdaBoost Edge Cases", "[AdaBoost]")
{
auto raw = RawDatasets("iris", true);
SECTION("Single estimator (depth 1 stump)")
{
AdaBoost ada(1, 1); // Single decision stump
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, Smoothing_t::NONE);
auto predictions = ada.predict(raw.Xt);
REQUIRE(predictions.size(0) == raw.yt.size(0));
auto weights = ada.getEstimatorWeights();
REQUIRE(weights.size() == 1);
}
SECTION("Perfect classifier scenario")
{
// Create a perfectly separable dataset
std::vector<std::vector<int>> X = { {0,0,1,1}, {0,1,0,1} };
std::vector<int> y = { 0, 0, 1, 1 };
std::vector<std::string> features = { "f1", "f2" };
std::string className = "class";
std::map<std::string, std::vector<int>> states;
states["f1"] = { 0, 1 };
states["f2"] = { 0, 1 };
states["class"] = { 0, 1 };
AdaBoost ada(10, 3);
ada.fit(X, y, features, className, states, Smoothing_t::NONE);
auto predictions = ada.predict(X);
REQUIRE(predictions.size() == 4);
// Should achieve perfect accuracy
int correct = 0;
for (size_t i = 0; i < predictions.size(); i++) {
if (predictions[i] == y[i]) correct++;
}
REQUIRE(correct == 4);
// Should stop early due to perfect classification
auto errors = ada.getTrainingErrors();
if (errors.size() > 0) {
REQUIRE(errors.back() < 1e-10); // Very low error
}
}
SECTION("Small dataset")
{
// Very small dataset
std::vector<std::vector<int>> X = { {0,1}, {1,0} };
std::vector<int> y = { 0, 1 };
std::vector<std::string> features = { "f1", "f2" };
std::string className = "class";
std::map<std::string, std::vector<int>> states;
states["f1"] = { 0, 1 };
states["f2"] = { 0, 1 };
states["class"] = { 0, 1 };
AdaBoost ada(5, 1);
REQUIRE_NOTHROW(ada.fit(X, y, features, className, states, Smoothing_t::NONE));
auto predictions = ada.predict(X);
REQUIRE(predictions.size() == 2);
}
}
TEST_CASE("AdaBoost Graph Visualization", "[AdaBoost]")
{
// Simple dataset for visualization
std::vector<std::vector<int>> X = { {0,0,1,1}, {0,1,0,1} };
std::vector<int> y = { 0, 1, 1, 0 }; // XOR pattern
std::vector<std::string> features = { "x1", "x2" };
std::string className = "xor";
std::map<std::string, std::vector<int>> states;
states["x1"] = { 0, 1 };
states["x2"] = { 0, 1 };
states["xor"] = { 0, 1 };
SECTION("Graph generation")
{
AdaBoost ada(5, 2);
ada.fit(X, y, features, className, states, Smoothing_t::NONE);
auto graph_lines = ada.graph();
REQUIRE(graph_lines.size() > 2);
REQUIRE(graph_lines.front() == "digraph AdaBoost {");
REQUIRE(graph_lines.back() == "}");
// Should contain base estimator references
bool has_estimators = false;
for (const auto& line : graph_lines) {
if (line.find("Estimator") != std::string::npos) {
has_estimators = true;
break;
}
}
REQUIRE(has_estimators);
// Should contain alpha values
bool has_alpha = false;
for (const auto& line : graph_lines) {
if (line.find("α") != std::string::npos || line.find("alpha") != std::string::npos) {
has_alpha = true;
break;
}
}
REQUIRE(has_alpha);
}
SECTION("Graph with title")
{
AdaBoost ada(3, 1);
ada.fit(X, y, features, className, states, Smoothing_t::NONE);
auto graph_lines = ada.graph("XOR AdaBoost");
bool has_title = false;
for (const auto& line : graph_lines) {
if (line.find("label=\"XOR AdaBoost\"") != std::string::npos) {
has_title = true;
break;
}
}
REQUIRE(has_title);
}
}
TEST_CASE("AdaBoost with Weights", "[AdaBoost]")
{
auto raw = RawDatasets("iris", true);
SECTION("Uniform weights")
{
AdaBoost ada(20, 3);
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, raw.weights, Smoothing_t::NONE);
auto predictions = ada.predict(raw.Xt);
REQUIRE(predictions.size(0) == raw.yt.size(0));
auto weights = ada.getEstimatorWeights();
REQUIRE(weights.size() > 0);
}
SECTION("Non-uniform weights")
{
auto weights = torch::ones({ raw.nSamples });
weights.index({ torch::indexing::Slice(0, 50) }) *= 3.0; // Emphasize first class
weights = weights / weights.sum();
AdaBoost ada(15, 2);
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, weights, Smoothing_t::NONE);
auto predictions = ada.predict(raw.Xt);
REQUIRE(predictions.size(0) == raw.yt.size(0));
// Check that training completed successfully
auto estimator_weights = ada.getEstimatorWeights();
auto errors = ada.getTrainingErrors();
REQUIRE(estimator_weights.size() == errors.size());
REQUIRE(estimator_weights.size() > 0);
}
}
TEST_CASE("AdaBoost Input Dimension Validation", "[AdaBoost]")
{
auto raw = RawDatasets("iris", true);
SECTION("Correct input dimensions")
{
AdaBoost ada(10, 2);
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, Smoothing_t::NONE);
// Test with correct tensor dimensions (features x samples)
REQUIRE_NOTHROW(ada.predict(raw.Xt));
REQUIRE_NOTHROW(ada.predict_proba(raw.Xt));
// Test with correct vector dimensions (features x samples)
REQUIRE_NOTHROW(ada.predict(raw.Xv));
REQUIRE_NOTHROW(ada.predict_proba(raw.Xv));
}
SECTION("Dimension consistency between interfaces")
{
AdaBoost ada(10, 2);
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, Smoothing_t::NONE);
// Get predictions from both interfaces
auto tensor_predictions = ada.predict(raw.Xt);
auto vector_predictions = ada.predict(raw.Xv);
// Should have same number of predictions
REQUIRE(tensor_predictions.size(0) == static_cast<int>(vector_predictions.size()));
// Test probability predictions
auto tensor_proba = ada.predict_proba(raw.Xt);
auto vector_proba = ada.predict_proba(raw.Xv);
REQUIRE(tensor_proba.size(0) == static_cast<int>(vector_proba.size()));
REQUIRE(tensor_proba.size(1) == static_cast<int>(vector_proba[0].size()));
// Verify predictions match between interfaces
for (int i = 0; i < tensor_predictions.size(0); i++) {
REQUIRE(tensor_predictions[i].item<int>() == vector_predictions[i]);
// Verify probabilities match between interfaces
for (int j = 0; j < tensor_proba.size(1); j++) {
REQUIRE(tensor_proba[i][j].item<double>() == Catch::Approx(vector_proba[i][j]).epsilon(1e-10));
}
}
}
}
TEST_CASE("AdaBoost Debug - Simple Dataset Analysis", "[AdaBoost][debug]")
{
// Create the exact same simple dataset that was failing
int n_samples = 20;
int n_features = 2;
std::vector<std::vector<int>> X(n_features, std::vector<int>(n_samples));
std::vector<int> y(n_samples);
// Simple pattern: class depends on first feature
for (int i = 0; i < n_samples; i++) {
X[0][i] = i < 10 ? 0 : 1;
X[1][i] = i % 2;
y[i] = X[0][i]; // Class equals first feature
}
std::vector<std::string> features = { "f1", "f2" };
std::string className = "class";
std::map<std::string, std::vector<int>> states;
states["f1"] = { 0, 1 };
states["f2"] = { 0, 1 };
states["class"] = { 0, 1 };
SECTION("Debug training process")
{
AdaBoost ada(5, 3); // Few estimators for debugging
// This should work perfectly on this simple dataset
REQUIRE_NOTHROW(ada.fit(X, y, features, className, states, Smoothing_t::NONE));
// Get training details
auto weights = ada.getEstimatorWeights();
auto errors = ada.getTrainingErrors();
INFO("Number of models trained: " << weights.size());
INFO("Training errors: ");
for (size_t i = 0; i < errors.size(); i++) {
INFO(" Model " << i << ": error=" << errors[i] << ", weight=" << weights[i]);
}
// Should have at least one model
REQUIRE(weights.size() > 0);
REQUIRE(errors.size() == weights.size());
// All training errors should be reasonable for this simple dataset
for (double error : errors) {
REQUIRE(error >= 0.0);
REQUIRE(error < 0.5); // Should be better than random
}
// Test predictions
auto predictions = ada.predict(X);
REQUIRE(predictions.size() == static_cast<size_t>(n_samples));
// Calculate accuracy
int correct = 0;
for (size_t i = 0; i < predictions.size(); i++) {
if (predictions[i] == y[i]) correct++;
INFO("Sample " << i << ": predicted=" << predictions[i] << ", actual=" << y[i]);
}
double accuracy = static_cast<double>(correct) / n_samples;
INFO("Accuracy: " << accuracy);
// Should achieve high accuracy on this perfectly separable dataset
REQUIRE(accuracy >= 0.9); // Lower threshold for debugging
// Test probability predictions
auto proba = ada.predict_proba(X);
REQUIRE(proba.size() == static_cast<size_t>(n_samples));
// Verify probabilities are valid
for (size_t i = 0; i < proba.size(); i++) {
auto p = proba[i];
REQUIRE(p.size() == 2);
REQUIRE(p[0] >= 0.0);
REQUIRE(p[1] >= 0.0);
double sum = p[0] + p[1];
REQUIRE(sum == Catch::Approx(1.0).epsilon(1e-6));
// Predicted class should match highest probability
int pred_class = predictions[i];
REQUIRE(pred_class == (p[0] > p[1] ? 0 : 1));
}
}
SECTION("Compare with single DecisionTree")
{
// Test that AdaBoost performs at least as well as a single tree
DecisionTree single_tree(3, 2, 1);
single_tree.fit(X, y, features, className, states, Smoothing_t::NONE);
auto tree_predictions = single_tree.predict(X);
int tree_correct = 0;
for (size_t i = 0; i < tree_predictions.size(); i++) {
if (tree_predictions[i] == y[i]) tree_correct++;
}
double tree_accuracy = static_cast<double>(tree_correct) / n_samples;
AdaBoost ada(5, 3);
ada.fit(X, y, features, className, states, Smoothing_t::NONE);
auto ada_predictions = ada.predict(X);
int ada_correct = 0;
for (size_t i = 0; i < ada_predictions.size(); i++) {
if (ada_predictions[i] == y[i]) ada_correct++;
}
double ada_accuracy = static_cast<double>(ada_correct) / n_samples;
INFO("DecisionTree accuracy: " << tree_accuracy);
INFO("AdaBoost accuracy: " << ada_accuracy);
// AdaBoost should perform at least as well as single tree
// (allowing small tolerance for numerical differences)
REQUIRE(ada_accuracy >= tree_accuracy - 0.1);
}
}
TEST_CASE("AdaBoost SAMME Algorithm Validation", "[AdaBoost]")
{
auto raw = RawDatasets("iris", true);
SECTION("Prediction consistency with probabilities")
{
AdaBoost ada(15, 3);
ada.fit(raw.dataset, raw.featurest, raw.classNamet, raw.statest, Smoothing_t::NONE);
auto predictions = ada.predict(raw.Xt);
auto probabilities = ada.predict_proba(raw.Xt);
REQUIRE(predictions.size(0) == probabilities.size(0));
REQUIRE(probabilities.size(1) == 3); // Three classes in Iris
// For each sample, predicted class should correspond to highest probability
for (int i = 0; i < predictions.size(0); i++) {
int predicted_class = predictions[i].item<int>();
auto probs = probabilities[i];
// Find class with highest probability
auto max_prob_idx = torch::argmax(probs).item<int>();
// Predicted class should match class with highest probability
REQUIRE(predicted_class == max_prob_idx);
// Probabilities should sum to 1
double sum_probs = torch::sum(probs).item<double>();
REQUIRE(sum_probs == Catch::Approx(1.0).epsilon(1e-6));
// All probabilities should be non-negative
for (int j = 0; j < 3; j++) {
REQUIRE(probs[j].item<double>() >= 0.0);
REQUIRE(probs[j].item<double>() <= 1.0);
}
}
}
SECTION("Weighted voting verification")
{
// Simple dataset where we can verify the weighted voting
std::vector<std::vector<int>> X = { {0,0,1,1}, {0,1,0,1} };
std::vector<int> y = { 0, 1, 1, 0 };
std::vector<std::string> features = { "f1", "f2" };
std::string className = "class";
std::map<std::string, std::vector<int>> states;
states["f1"] = { 0, 1 };
states["f2"] = { 0, 1 };
states["class"] = { 0, 1 };
AdaBoost ada(5, 2);
ada.fit(X, y, features, className, states, Smoothing_t::NONE);
auto predictions = ada.predict(X);
auto probabilities = ada.predict_proba(X);
auto alphas = ada.getEstimatorWeights();
REQUIRE(predictions.size() == 4);
REQUIRE(probabilities.size() == 4);
REQUIRE(probabilities[0].size() == 2); // Two classes
REQUIRE(alphas.size() > 0);
// Verify that estimator weights are reasonable
for (double alpha : alphas) {
REQUIRE(alpha >= 0.0); // Alphas should be non-negative
}
// Verify prediction-probability consistency
for (size_t i = 0; i < predictions.size(); i++) {
int pred = predictions[i];
auto probs = probabilities[i];
REQUIRE(pred == (probs[0] > probs[1] ? 0 : 1));
REQUIRE(probs[0] + probs[1] == Catch::Approx(1.0).epsilon(1e-6));
}
}
SECTION("Empty models edge case")
{
AdaBoost ada(1, 1);
// Try to predict before fitting
std::vector<std::vector<int>> X = { {0}, {1} };
REQUIRE_THROWS_WITH(ada.predict(X), ContainsSubstring("not been fitted"));
REQUIRE_THROWS_WITH(ada.predict_proba(X), ContainsSubstring("not been fitted"));
}
}

View File

@@ -39,6 +39,9 @@ TEST_CASE("DecisionTree Hyperparameter Setting", "[DecisionTree]")
REQUIRE_NOTHROW(dt.setMaxDepth(10));
REQUIRE_NOTHROW(dt.setMinSamplesSplit(5));
REQUIRE_NOTHROW(dt.setMinSamplesLeaf(2));
REQUIRE(dt.getMaxDepth() == 10);
REQUIRE(dt.getMinSamplesSplit() == 5);
REQUIRE(dt.getMinSamplesLeaf() == 2);
}
SECTION("Set hyperparameters via JSON")
@@ -49,6 +52,9 @@ TEST_CASE("DecisionTree Hyperparameter Setting", "[DecisionTree]")
params["min_samples_leaf"] = 2;
REQUIRE_NOTHROW(dt.setHyperparameters(params));
REQUIRE(dt.getMaxDepth() == 7);
REQUIRE(dt.getMinSamplesSplit() == 4);
REQUIRE(dt.getMinSamplesLeaf() == 2);
}
SECTION("Invalid hyperparameters should throw")
@@ -164,7 +170,9 @@ TEST_CASE("DecisionTree on Iris Dataset", "[DecisionTree][iris]")
// Calculate accuracy
auto correct = torch::sum(predictions == raw.yt).item<int>();
double accuracy = static_cast<double>(correct) / raw.yt.size(0);
double acurracy_computed = dt.score(raw.Xt, raw.yt);
REQUIRE(accuracy > 0.97); // Reasonable accuracy for Iris
REQUIRE(acurracy_computed == Catch::Approx(accuracy).epsilon(1e-6));
}
SECTION("Training with vector interface")