Add folder to b_best
This commit is contained in:
@@ -2,6 +2,7 @@
|
|||||||
|
|
||||||

|

|
||||||
[](<https://opensource.org/licenses/MIT>)
|
[](<https://opensource.org/licenses/MIT>)
|
||||||
|
[](https://deepwiki.com/rmontanana/Platform)
|
||||||

|

|
||||||
|
|
||||||
Platform to run Bayesian Networks and Machine Learning Classifiers experiments.
|
Platform to run Bayesian Networks and Machine Learning Classifiers experiments.
|
||||||
|
@@ -9,9 +9,8 @@
|
|||||||
|
|
||||||
void manageArguments(argparse::ArgumentParser& program)
|
void manageArguments(argparse::ArgumentParser& program)
|
||||||
{
|
{
|
||||||
program.add_argument("-m", "--model")
|
program.add_argument("-m", "--model").help("Model to use or any").default_value("any");
|
||||||
.help("Model to use or any")
|
program.add_argument("--folder").help("Results folder to use").default_value(platform::Paths::results());
|
||||||
.default_value("any");
|
|
||||||
program.add_argument("-d", "--dataset").default_value("any").help("Filter results of the selected model) (any for all datasets)");
|
program.add_argument("-d", "--dataset").default_value("any").help("Filter results of the selected model) (any for all datasets)");
|
||||||
program.add_argument("-s", "--score").default_value("accuracy").help("Filter results of the score name supplied");
|
program.add_argument("-s", "--score").default_value("accuracy").help("Filter results of the score name supplied");
|
||||||
program.add_argument("--friedman").help("Friedman test").default_value(false).implicit_value(true);
|
program.add_argument("--friedman").help("Friedman test").default_value(false).implicit_value(true);
|
||||||
@@ -38,12 +37,13 @@ int main(int argc, char** argv)
|
|||||||
{
|
{
|
||||||
argparse::ArgumentParser program("b_best", { platform_project_version.begin(), platform_project_version.end() });
|
argparse::ArgumentParser program("b_best", { platform_project_version.begin(), platform_project_version.end() });
|
||||||
manageArguments(program);
|
manageArguments(program);
|
||||||
std::string model, dataset, score;
|
std::string model, dataset, score, folder;
|
||||||
bool build, report, friedman, excel, tex, index;
|
bool build, report, friedman, excel, tex, index;
|
||||||
double level;
|
double level;
|
||||||
try {
|
try {
|
||||||
program.parse_args(argc, argv);
|
program.parse_args(argc, argv);
|
||||||
model = program.get<std::string>("model");
|
model = program.get<std::string>("model");
|
||||||
|
folder = program.get<std::string>("folder");
|
||||||
dataset = program.get<std::string>("dataset");
|
dataset = program.get<std::string>("dataset");
|
||||||
score = program.get<std::string>("score");
|
score = program.get<std::string>("score");
|
||||||
friedman = program.get<bool>("friedman");
|
friedman = program.get<bool>("friedman");
|
||||||
@@ -66,7 +66,7 @@ int main(int argc, char** argv)
|
|||||||
exit(1);
|
exit(1);
|
||||||
}
|
}
|
||||||
// Generate report
|
// Generate report
|
||||||
auto results = platform::BestResults(platform::Paths::results(), score, model, dataset, friedman, level);
|
auto results = platform::BestResults(folder, score, model, dataset, friedman, level);
|
||||||
if (model == "any") {
|
if (model == "any") {
|
||||||
results.buildAll();
|
results.buildAll();
|
||||||
results.reportAll(excel, tex, index);
|
results.reportAll(excel, tex, index);
|
||||||
|
@@ -43,6 +43,7 @@ namespace platform {
|
|||||||
void add_active_parents(const std::vector<int>& active_parents);
|
void add_active_parents(const std::vector<int>& active_parents);
|
||||||
void add_active_parent(int parent);
|
void add_active_parent(int parent);
|
||||||
void remove_last_parent();
|
void remove_last_parent();
|
||||||
|
void setHyperparameters(const nlohmann::json& hyperparameters_) override {};
|
||||||
protected:
|
protected:
|
||||||
bool debug = false;
|
bool debug = false;
|
||||||
Xaode aode_;
|
Xaode aode_;
|
||||||
|
@@ -270,7 +270,6 @@ namespace platform {
|
|||||||
//
|
//
|
||||||
if (!quiet)
|
if (!quiet)
|
||||||
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
|
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
|
||||||
std::cout << "Discretized: " << discretized << " " << score_train_value << std::endl;
|
|
||||||
test_timer.start();
|
test_timer.start();
|
||||||
// auto y_predict = clf->predict(X_test);
|
// auto y_predict = clf->predict(X_test);
|
||||||
auto y_proba_test = clf->predict_proba(X_test);
|
auto y_proba_test = clf->predict_proba(X_test);
|
||||||
|
Reference in New Issue
Block a user