Refactor mpi classes

This commit is contained in:
2024-12-20 19:10:17 +01:00
parent f88944de36
commit 1cc19a7b19
8 changed files with 30 additions and 293 deletions

View File

@@ -29,7 +29,7 @@ add_executable(
target_link_libraries(b_best Boost::boost "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy "${XLSXWRITER_LIB}") target_link_libraries(b_best Boost::boost "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy "${XLSXWRITER_LIB}")
# b_grid # b_grid
set(grid_sources GridSearch.cpp GridData.cpp GridExperiment.cpp GridFunctions.cpp) set(grid_sources GridSearch.cpp GridData.cpp GridExperiment.cpp)
list(TRANSFORM grid_sources PREPEND grid/) list(TRANSFORM grid_sources PREPEND grid/)
add_executable(b_grid commands/b_grid.cpp ${grid_sources} add_executable(b_grid commands/b_grid.cpp ${grid_sources}
common/Datasets.cpp common/Dataset.cpp common/Discretization.cpp common/Datasets.cpp common/Dataset.cpp common/Discretization.cpp

View File

@@ -32,12 +32,22 @@ namespace platform {
}; };
~GridBase() = default; ~GridBase() = default;
virtual void go(struct ConfigMPI& config_mpi) = 0; virtual void go(struct ConfigMPI& config_mpi) = 0;
virtual json build_tasks_mpi() = 0;
protected: protected:
virtual json build_tasks() = 0;
struct ConfigGrid config; struct ConfigGrid config;
Timer timer; // used to measure the time of the whole process Timer timer; // used to measure the time of the whole process
const std::string separator = "|"; const std::string separator = "|";
bayesnet::Smoothing_t smooth_type{ bayesnet::Smoothing_t::NONE }; bayesnet::Smoothing_t smooth_type{ bayesnet::Smoothing_t::NONE };
}; };
class MPI_Base {
public:
static std::string get_color_rank(int rank)
{
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN(), Colors::YELLOW(), Colors::BLACK() };
std::string id = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
auto idx = rank % id.size();
return *(colors.begin() + rank % colors.size()) + id[idx];
}
};
} /* namespace platform */ } /* namespace platform */
#endif #endif

View File

@@ -45,31 +45,5 @@ namespace platform {
const int TAG_RESULT = 2; const int TAG_RESULT = 2;
const int TAG_TASK = 3; const int TAG_TASK = 3;
const int TAG_END = 4; const int TAG_END = 4;
/* *************************************************************************************************************
//
// MPI Common Functions
//
************************************************************************************************************* */
std::string get_color_rank(int rank);
/* *************************************************************************************************************
//
// MPI Experiment Functions
//
************************************************************************************************************* */
json mpi_experiment_producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
void mpi_experiment_consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
void join_results_folds(json& results, json& all_results, std::string& model);
json store_experiment_result(std::vector<std::string>& names, Task_Result& result, json& results);
void mpi_experiment_consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tass, int n_task, Datasets& datasets, Task_Result* result);
/* *************************************************************************************************************
//
// MPI Search Functions
//
************************************************************************************************************* */
json mpi_search_producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
void mpi_search_consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
void select_best_results_folds(json& results, json& all_results, std::string& model);
json store_search_result(std::vector<std::string>& names, Task_Result& result, json& results);
void mpi_search_consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result);
} /* namespace platform */ } /* namespace platform */
#endif #endif

View File

@@ -21,7 +21,7 @@ namespace platform {
} }
return json(); return json();
} }
json GridExperiment::build_tasks_mpi() json GridExperiment::build_tasks()
{ {
auto tasks = json::array(); auto tasks = json::array();
auto grid = GridData(Paths::grid_input(config.model)); auto grid = GridData(Paths::grid_input(config.model));
@@ -113,7 +113,7 @@ namespace platform {
json tasks; json tasks;
if (config_mpi.rank == config_mpi.manager) { if (config_mpi.rank == config_mpi.manager) {
timer.start(); timer.start();
tasks = build_tasks_mpi(); tasks = build_tasks();
auto tasks_str = tasks.dump(); auto tasks_str = tasks.dump();
tasks_size = tasks_str.size(); tasks_size = tasks_str.size();
msg = new char[tasks_size + 1]; msg = new char[tasks_size + 1];
@@ -137,7 +137,7 @@ namespace platform {
// 2a. Producer delivers the tasks to the consumers // 2a. Producer delivers the tasks to the consumers
// //
auto datasets_names = std::vector<std::string>(); auto datasets_names = std::vector<std::string>();
json all_results = mpi_experiment_producer(datasets_names, tasks, config_mpi, MPI_Result); json all_results = MPI_EXPERIMENT::producer(datasets_names, tasks, config_mpi, MPI_Result);
std::cout << separator << std::endl; std::cout << separator << std::endl;
// //
// 3. Manager select the bests sccores for each dataset // 3. Manager select the bests sccores for each dataset
@@ -152,7 +152,7 @@ namespace platform {
// //
// 2b. Consumers prostore_search_resultcess the tasks and send the results to the producer // 2b. Consumers prostore_search_resultcess the tasks and send the results to the producer
// //
mpi_experiment_consumer(datasets, tasks, config, config_mpi, MPI_Result); MPI_EXPERIMENT::consumer(datasets, tasks, config, config_mpi, MPI_Result);
} }
} }
json GridExperiment::initializeResults() json GridExperiment::initializeResults()

View File

@@ -23,22 +23,15 @@ namespace platform {
private: private:
void save(json& results); void save(json& results);
json initializeResults(); json initializeResults();
json build_tasks_mpi(); json build_tasks();
}; };
/* ************************************************************************************************************* /* *************************************************************************************************************
// //
// MPI Search Functions // MPI Search Functions
// //
************************************************************************************************************* */ ************************************************************************************************************* */
class MPI_EXPERIMENT { class MPI_EXPERIMENT :public MPI_Base {
public: public:
static std::string get_color_rank(int rank)
{
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN(), Colors::YELLOW(), Colors::BLACK() };
std::string id = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
auto idx = rank % id.size();
return *(colors.begin() + rank % colors.size()) + id[idx];
}
static json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result) static json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{ {
Task_Result result; Task_Result result;
@@ -53,7 +46,7 @@ namespace platform {
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status); MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) { if (status.MPI_TAG == TAG_RESULT) {
//Store result //Store result
store_search_result(names, result, results); store_result(names, result, results);
} }
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD); MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
} }
@@ -65,7 +58,7 @@ namespace platform {
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status); MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) { if (status.MPI_TAG == TAG_RESULT) {
//Store result //Store result
store_search_result(names, result, results); store_result(names, result, results);
} }
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD); MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
} }
@@ -88,7 +81,7 @@ namespace platform {
if (status.MPI_TAG == TAG_END) { if (status.MPI_TAG == TAG_END) {
break; break;
} }
mpi_experiment_consumer_go(config, config_mpi, tasks, task, datasets, &result); consumer_go(config, config_mpi, tasks, task, datasets, &result);
// //
// 2b.3 Consumers send the result to the producer // 2b.3 Consumers send the result to the producer
// //
@@ -125,7 +118,7 @@ namespace platform {
results[dataset] = json_best; results[dataset] = json_best;
} }
} }
static json store_search_result(std::vector<std::string>& names, Task_Result& result, json& results) static json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
{ {
json json_result = { json json_result = {
{ "score", result.score }, { "score", result.score },

View File

@@ -1,240 +0,0 @@
#include <iostream>
#include <torch/torch.h>
#include <folding.hpp>
#include "main/Models.h"
#include "common/Paths.h"
#include "common/Colors.h"
#include "common/Utils.h"
#include "GridConfig.h"
namespace platform {
using json = nlohmann::ordered_json;
std::string get_color_rank(int rank)
{
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN(), Colors::YELLOW(), Colors::BLACK() };
std::string id = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
auto idx = rank % id.size();
return *(colors.begin() + rank % colors.size()) + id[idx];
}
/* *************************************************************************************************************
//
// MPI Experiment Functions
//
************************************************************************************************************* */
json mpi_experiment_producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
json results;
int num_tasks = tasks.size();
//
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
//
for (int i = 0; i < num_tasks; ++i) {
MPI_Status status;
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) {
//Store result
store_experiment_result(names, result, results);
}
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
}
//
// 2a.2 Producer will send the end message to all the consumers
//
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
MPI_Status status;
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) {
//Store result
store_experiment_result(names, result, results);
}
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
}
return results;
}
void mpi_experiment_consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
//
// 2b.1 Consumers announce to the producer that they are ready to receive a task
//
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
int task;
while (true) {
MPI_Status status;
//
// 2b.2 Consumers receive the task from the producer and process it
//
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_END) {
break;
}
mpi_experiment_consumer_go(config, config_mpi, tasks, task, datasets, &result);
//
// 2b.3 Consumers send the result to the producer
//
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
}
}
void join_results_folds(json& results, json& all_results, std::string& model)
{
Timer timer;
auto grid = GridData(Paths::grid_input(model));
//
// Select the best result of the computed outer folds
//
for (const auto& result : all_results.items()) {
// each result has the results of all the outer folds as each one were a different task
double best_score = 0.0;
json best;
for (const auto& result_fold : result.value()) {
double score = result_fold["score"].get<double>();
if (score > best_score) {
best_score = score;
best = result_fold;
}
}
auto dataset = result.key();
auto combinations = grid.getGrid(dataset);
json json_best = {
{ "score", best_score },
{ "hyperparameters", combinations[best["combination"].get<int>()] },
{ "date", get_date() + " " + get_time() },
{ "grid", grid.getInputGrid(dataset) },
{ "duration", timer.translate2String(best["time"].get<double>()) }
};
results[dataset] = json_best;
}
}
json store_experiment_result(std::vector<std::string>& names, Task_Result& result, json& results)
{
json json_result = {
{ "score", result.score },
{ "combination", result.idx_combination },
{ "fold", result.n_fold },
{ "time", result.time },
{ "dataset", result.idx_dataset }
};
auto name = names[result.idx_dataset];
if (!results.contains(name)) {
results[name] = json::array();
}
results[name].push_back(json_result);
return results;
}
void mpi_experiment_consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
{
//
// initialize
//
Timer timer;
timer.start();
json task = tasks[n_task];
auto model = config.model;
auto grid = GridData(Paths::grid_input(model));
auto dataset_name = task["dataset"].get<std::string>();
auto idx_dataset = task["idx_dataset"].get<int>();
auto seed = task["seed"].get<int>();
auto n_fold = task["fold"].get<int>();
bool stratified = config.stratified;
bayesnet::Smoothing_t smooth;
if (config.smooth_strategy == "ORIGINAL")
smooth = bayesnet::Smoothing_t::ORIGINAL;
else if (config.smooth_strategy == "LAPLACE")
smooth = bayesnet::Smoothing_t::LAPLACE;
else if (config.smooth_strategy == "CESTNIK")
smooth = bayesnet::Smoothing_t::CESTNIK;
//
// Generate the hyperparameters combinations
//
auto& dataset = datasets.getDataset(dataset_name);
auto combinations = grid.getGrid(dataset_name);
dataset.load();
auto [X, y] = dataset.getTensors();
auto features = dataset.getFeatures();
auto className = dataset.getClassName();
//
// Start working on task
//
folding::Fold* fold;
if (stratified)
fold = new folding::StratifiedKFold(config.n_folds, y, seed);
else
fold = new folding::KFold(config.n_folds, y.size(0), seed);
auto [train, test] = fold->getFold(n_fold);
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
float best_fold_score = 0.0;
int best_idx_combination = -1;
json best_fold_hyper;
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
auto hyperparam_line = combinations[idx_combination];
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
folding::Fold* nested_fold;
if (config.stratified)
nested_fold = new folding::StratifiedKFold(config.nested, y_train, seed);
else
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
double score = 0.0;
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
//
// Nested level fold
//
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
auto train_nested_t = torch::tensor(train_nested);
auto test_nested_t = torch::tensor(test_nested);
auto X_nested_train = X_train.index({ "...", train_nested_t });
auto y_nested_train = y_train.index({ train_nested_t });
auto X_nested_test = X_train.index({ "...", test_nested_t });
auto y_nested_test = y_train.index({ test_nested_t });
//
// Build Classifier with selected hyperparameters
//
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset_name);
clf->setHyperparameters(hyperparameters.get(dataset_name));
//
// Train model
//
clf->fit(X_nested_train, y_nested_train, features, className, states, smooth);
//
// Test model
//
score += clf->score(X_nested_test, y_nested_test);
}
delete nested_fold;
score /= config.nested;
if (score > best_fold_score) {
best_fold_score = score;
best_idx_combination = idx_combination;
best_fold_hyper = hyperparam_line;
}
}
delete fold;
//
// Build Classifier with the best hyperparameters to obtain the best score
//
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset_name);
clf->setHyperparameters(best_fold_hyper);
clf->fit(X_train, y_train, features, className, states, smooth);
best_fold_score = clf->score(X_test, y_test);
//
// Return the result
//
result->idx_dataset = task["idx_dataset"].get<int>();
result->idx_combination = best_idx_combination;
result->score = best_fold_score;
result->n_fold = n_fold;
result->time = timer.getDuration();
//
// Update progress bar
//
std::cout << get_color_rank(config_mpi.rank) << std::flush;
}
}

View File

@@ -53,7 +53,7 @@ namespace platform {
} }
return datasets_names; return datasets_names;
} }
json GridSearch::build_tasks_mpi() json GridSearch::build_tasks()
{ {
auto tasks = json::array(); auto tasks = json::array();
auto grid = GridData(Paths::grid_input(config.model)); auto grid = GridData(Paths::grid_input(config.model));
@@ -145,7 +145,7 @@ namespace platform {
json tasks; json tasks;
if (config_mpi.rank == config_mpi.manager) { if (config_mpi.rank == config_mpi.manager) {
timer.start(); timer.start();
tasks = build_tasks_mpi(); tasks = build_tasks();
auto tasks_str = tasks.dump(); auto tasks_str = tasks.dump();
tasks_size = tasks_str.size(); tasks_size = tasks_str.size();
msg = new char[tasks_size + 1]; msg = new char[tasks_size + 1];

View File

@@ -26,14 +26,14 @@ namespace platform {
void save(json& results); void save(json& results);
json initializeResults(); json initializeResults();
std::vector<std::string> filterDatasets(Datasets& datasets) const; std::vector<std::string> filterDatasets(Datasets& datasets) const;
json build_tasks_mpi(); json build_tasks();
}; };
/* ************************************************************************************************************* /* *************************************************************************************************************
// //
// MPI Search Functions // MPI Search Functions
// //
************************************************************************************************************* */ ************************************************************************************************************* */
class MPI_SEARCH { class MPI_SEARCH :public MPI_Base {
public: public:
static json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result) static json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{ {
@@ -49,7 +49,7 @@ namespace platform {
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status); MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) { if (status.MPI_TAG == TAG_RESULT) {
//Store result //Store result
store_search_result(names, result, results); store_result(names, result, results);
} }
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD); MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
} }
@@ -61,7 +61,7 @@ namespace platform {
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status); MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) { if (status.MPI_TAG == TAG_RESULT) {
//Store result //Store result
store_search_result(names, result, results); store_result(names, result, results);
} }
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD); MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
} }
@@ -84,7 +84,7 @@ namespace platform {
if (status.MPI_TAG == TAG_END) { if (status.MPI_TAG == TAG_END) {
break; break;
} }
mpi_experiment_consumer_go(config, config_mpi, tasks, task, datasets, &result); consumer_go(config, config_mpi, tasks, task, datasets, &result);
// //
// 2b.3 Consumers send the result to the producer // 2b.3 Consumers send the result to the producer
// //
@@ -121,7 +121,7 @@ namespace platform {
results[dataset] = json_best; results[dataset] = json_best;
} }
} }
static json store_search_result(std::vector<std::string>& names, Task_Result& result, json& results) static json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
{ {
json json_result = { json json_result = {
{ "score", result.score }, { "score", result.score },