Replace #define ... with pragma once
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
#ifndef EXPERIMENT_H
|
||||
#define EXPERIMENT_H
|
||||
#pragma once
|
||||
|
||||
#include <torch/torch.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <string>
|
||||
@@ -42,5 +42,4 @@ namespace platform {
|
||||
int nfolds{ 0 };
|
||||
int max_name{ 7 }; // max length of dataset name for formatting (default 7)
|
||||
};
|
||||
}
|
||||
#endif
|
||||
}
|
@@ -1,5 +1,5 @@
|
||||
#ifndef HYPERPARAMETERS_H
|
||||
#define HYPERPARAMETERS_H
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
@@ -20,4 +20,3 @@ namespace platform {
|
||||
std::map<std::string, json> hyperparameters;
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* HYPERPARAMETERS_H */
|
@@ -1,5 +1,5 @@
|
||||
#ifndef MODELS_H
|
||||
#define MODELS_H
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
#include <bayesnet/BaseClassifier.h>
|
||||
#include <bayesnet/ensembles/AODE.h>
|
||||
@@ -39,4 +39,3 @@ namespace platform {
|
||||
Registrar(const std::string& className, function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,5 +1,5 @@
|
||||
#ifndef RESULT_H
|
||||
#define RESULT_H
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
@@ -48,4 +48,3 @@ namespace platform {
|
||||
double score = 0.0;
|
||||
};
|
||||
};
|
||||
#endif
|
@@ -1,5 +1,5 @@
|
||||
#ifndef MODEL_REGISTER_H
|
||||
#define MODEL_REGISTER_H
|
||||
#pragma once
|
||||
|
||||
static platform::Registrar registrarT("TAN",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
|
||||
static platform::Registrar registrarTLD("TANLd",
|
||||
@@ -27,5 +27,4 @@ static platform::Registrar registrarSvc("SVC",
|
||||
static platform::Registrar registrarRaF("RandomForest",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::RandomForest();});
|
||||
static platform::Registrar registrarXGB("XGBoost",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::XGBoost();});
|
||||
#endif
|
||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::XGBoost();});
|
Reference in New Issue
Block a user