Files
BayesNet/bayesnet/ensembles/AODELd.h
Ricardo Montañana Gómez 9f3de4d924 Add new hyperparameters to the Ld classifiers
- *ld_algorithm*: algorithm to use for local discretization, with the following options: "MDLP", "BINQ", "BINU".
  - *ld_proposed_cuts*: number of cut points to return.
  - *mdlp_min_length*: minimum length of a partition in MDLP algorithm to be evaluated for partition.
  - *mdlp_max_depth*: maximum level of recursion in MDLP algorithm.
2025-06-29 13:00:34 +02:00

27 lines
1.1 KiB
C++

// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef AODELD_H
#define AODELD_H
#include "bayesnet/classifiers/Proposal.h"
#include "bayesnet/classifiers/SPODELd.h"
#include "Ensemble.h"
namespace bayesnet {
class AODELd : public Ensemble, public Proposal {
public:
AODELd(bool predict_voting = true);
virtual ~AODELd() = default;
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing) override;
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
protected:
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
void buildModel(const torch::Tensor& weights) override;
private:
nlohmann::json hyperparameters = {}; // Hyperparameters for the model
};
}
#endif // !AODELD_H