Files
BayesNet/html/bayesnet/ensembles/BoostAODE.cc.gcov.html

55 KiB
Raw Blame History

<html lang="en"> <head> </head>
LCOV - code coverage report
Current view: top level - bayesnet/ensembles - BoostAODE.cc (source / functions) Coverage Total Hit
Test: coverage.info Lines: 99.1 % 218 216
Test Date: 2024-04-21 16:43:29 Functions: 100.0 % 9 9

            Line data    Source code
       1              : // ***************************************************************
       2              : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
       3              : // SPDX-FileType: SOURCE
       4              : // SPDX-License-Identifier: MIT
       5              : // ***************************************************************
       6              : 
       7              : #include <set>
       8              : #include <functional>
       9              : #include <limits.h>
      10              : #include <tuple>
      11              : #include <folding.hpp>
      12              : #include "bayesnet/feature_selection/CFS.h"
      13              : #include "bayesnet/feature_selection/FCBF.h"
      14              : #include "bayesnet/feature_selection/IWSS.h"
      15              : #include "BoostAODE.h"
      16              : 
      17              : namespace bayesnet {
      18              : 
      19           41 :     BoostAODE::BoostAODE(bool predict_voting) : Ensemble(predict_voting)
      20              :     {
      21          410 :         validHyperparameters = {
      22              :             "maxModels", "bisection", "order", "convergence", "threshold",
      23              :             "select_features", "maxTolerance", "predict_voting", "block_update"
      24          410 :         };
      25              : 
      26          123 :     }
      27           21 :     void BoostAODE::buildModel(const torch::Tensor& weights)
      28              :     {
      29              :         // Models shall be built in trainModel
      30           21 :         models.clear();
      31           21 :         significanceModels.clear();
      32           21 :         n_models = 0;
      33              :         // Prepare the validation dataset
      34           63 :         auto y_ = dataset.index({ -1, "..." });
      35           21 :         if (convergence) {
      36              :             // Prepare train & validation sets from train data
      37           17 :             auto fold = folding::StratifiedKFold(5, y_, 271);
      38           17 :             auto [train, test] = fold.getFold(0);
      39           17 :             auto train_t = torch::tensor(train);
      40           17 :             auto test_t = torch::tensor(test);
      41              :             // Get train and validation sets
      42           85 :             X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
      43           51 :             y_train = dataset.index({ -1, train_t });
      44           85 :             X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
      45           51 :             y_test = dataset.index({ -1, test_t });
      46           17 :             dataset = X_train;
      47           17 :             m = X_train.size(1);
      48           17 :             auto n_classes = states.at(className).size();
      49              :             // Build dataset with train data
      50           17 :             buildDataset(y_train);
      51           17 :             metrics = Metrics(dataset, features, className, n_classes);
      52           17 :         } else {
      53              :             // Use all data to train
      54           16 :             X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
      55            4 :             y_train = y_;
      56              :         }
      57          203 :     }
      58           20 :     void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
      59              :     {
      60           20 :         auto hyperparameters = hyperparameters_;
      61           20 :         if (hyperparameters.contains("order")) {
      62           25 :             std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
      63            5 :             order_algorithm = hyperparameters["order"];
      64            5 :             if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
      65            1 :                 throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
      66              :             }
      67            4 :             hyperparameters.erase("order");
      68            5 :         }
      69           19 :         if (hyperparameters.contains("convergence")) {
      70            7 :             convergence = hyperparameters["convergence"];
      71            7 :             hyperparameters.erase("convergence");
      72              :         }
      73           19 :         if (hyperparameters.contains("bisection")) {
      74            6 :             bisection = hyperparameters["bisection"];
      75            6 :             hyperparameters.erase("bisection");
      76              :         }
      77           19 :         if (hyperparameters.contains("threshold")) {
      78            6 :             threshold = hyperparameters["threshold"];
      79            6 :             hyperparameters.erase("threshold");
      80              :         }
      81           19 :         if (hyperparameters.contains("maxTolerance")) {
      82            9 :             maxTolerance = hyperparameters["maxTolerance"];
      83            9 :             if (maxTolerance < 1 || maxTolerance > 4)
      84            3 :                 throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]");
      85            6 :             hyperparameters.erase("maxTolerance");
      86              :         }
      87           16 :         if (hyperparameters.contains("predict_voting")) {
      88            1 :             predict_voting = hyperparameters["predict_voting"];
      89            1 :             hyperparameters.erase("predict_voting");
      90              :         }
      91           16 :         if (hyperparameters.contains("select_features")) {
      92            9 :             auto selectedAlgorithm = hyperparameters["select_features"];
      93           45 :             std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
      94            9 :             selectFeatures = true;
      95            9 :             select_features_algorithm = selectedAlgorithm;
      96            9 :             if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
      97            1 :                 throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
      98              :             }
      99            8 :             hyperparameters.erase("select_features");
     100           10 :         }
     101           15 :         if (hyperparameters.contains("block_update")) {
     102            2 :             block_update = hyperparameters["block_update"];
     103            2 :             hyperparameters.erase("block_update");
     104              :         }
     105           15 :         Classifier::setHyperparameters(hyperparameters);
     106           34 :     }
     107          108 :     std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
     108              :     {
     109          108 :         bool terminate = false;
     110          108 :         double alpha_t = 0;
     111          108 :         auto mask_wrong = ypred != ytrain;
     112          108 :         auto mask_right = ypred == ytrain;
     113          108 :         auto masked_weights = weights * mask_wrong.to(weights.dtype());
     114          108 :         double epsilon_t = masked_weights.sum().item<double>();
     115          108 :         if (epsilon_t > 0.5) {
     116              :             // Inverse the weights policy (plot ln(wt))
     117              :             // "In each round of AdaBoost, there is a sanity check to ensure that the current base 
     118              :             // learner is better than random guess" (Zhi-Hua Zhou, 2012)
     119            4 :             terminate = true;
     120              :         } else {
     121          104 :             double wt = (1 - epsilon_t) / epsilon_t;
     122          104 :             alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
     123              :             // Step 3.2: Update weights for next classifier
     124              :             // Step 3.2.1: Update weights of wrong samples
     125          104 :             weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
     126              :             // Step 3.2.2: Update weights of right samples
     127          104 :             weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
     128              :             // Step 3.3: Normalise the weights
     129          104 :             double totalWeights = torch::sum(weights).item<double>();
     130          104 :             weights = weights / totalWeights;
     131              :         }
     132          216 :         return { weights, alpha_t, terminate };
     133          108 :     }
     134            5 :     std::tuple<torch::Tensor&, double, bool> BoostAODE::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights)
     135              :     {
     136              :         /* Update Block algorithm
     137              :             k = # of models in block
     138              :             n_models = # of models in ensemble to make predictions
     139              :             n_models_bak = # models saved
     140              :             models = vector of models to make predictions
     141              :             models_bak = models not used to make predictions
     142              :             significances_bak = backup of significances vector
     143              : 
     144              :             Case list
     145              :             A) k = 1, n_models = 1              => n = 0 , n_models = n + k
     146              :             B) k = 1, n_models = n + 1  => n_models = n + k
     147              :             C) k > 1, n_models = k + 1       => n= 1, n_models = n + k
     148              :             D) k > 1, n_models = k           => n = 0, n_models = n + k
     149              :             E) k > 1, n_models = k + n       => n_models = n + k
     150              : 
     151              :             A, D) n=0, k > 0, n_models == k
     152              :             1. n_models_bak <- n_models
     153              :             2. significances_bak <- significances
     154              :             3. significances = vector(k, 1)
     155              :             4. Dont move any classifiers out of models
     156              :             5. n_models <- k
     157              :             6. Make prediction, compute alpha, update weights
     158              :             7. Dont restore any classifiers to models
     159              :             8. significances <- significances_bak
     160              :             9. Update last k significances
     161              :             10. n_models <- n_models_bak
     162              : 
     163              :             B, C, E) n > 0, k > 0, n_models == n + k
     164              :             1. n_models_bak <- n_models
     165              :             2. significances_bak <- significances
     166              :             3. significances = vector(k, 1)
     167              :             4. Move first n classifiers to models_bak
     168              :             5. n_models <- k
     169              :             6. Make prediction, compute alpha, update weights
     170              :             7. Insert classifiers in models_bak to be the first n models
     171              :             8. significances <- significances_bak
     172              :             9. Update last k significances
     173              :             10. n_models <- n_models_bak
     174              :         */
     175              :         //
     176              :         // Make predict with only the last k models
     177              :         //
     178            5 :         std::unique_ptr<Classifier> model;
     179            5 :         std::vector<std::unique_ptr<Classifier>> models_bak;
     180              :         // 1. n_models_bak <- n_models 2. significances_bak <- significances
     181            5 :         auto significance_bak = significanceModels;
     182            5 :         auto n_models_bak = n_models;
     183              :         // 3. significances = vector(k, 1)
     184            5 :         significanceModels = std::vector<double>(k, 1.0);
     185              :         // 4. Move first n classifiers to models_bak
     186              :         // backup the first n_models - k models (if n_models == k, don't backup any)
     187           20 :         for (int i = 0; i < n_models - k; ++i) {
     188           15 :             model = std::move(models[0]);
     189           15 :             models.erase(models.begin());
     190           15 :             models_bak.push_back(std::move(model));
     191              :         }
     192            5 :         assert(models.size() == k);
     193              :         // 5. n_models <- k
     194            5 :         n_models = k;
     195              :         // 6. Make prediction, compute alpha, update weights
     196            5 :         auto ypred = predict(X_train);
     197              :         //
     198              :         // Update weights
     199              :         //
     200              :         double alpha_t;
     201              :         bool terminate;
     202            5 :         std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
     203              :         //
     204              :         // Restore the models if needed
     205              :         //
     206              :         // 7. Insert classifiers in models_bak to be the first n models
     207              :         // if n_models_bak == k, don't restore any, because none of them were moved
     208            5 :         if (k != n_models_bak) {
     209              :             // Insert in the same order as they were extracted
     210            4 :             int bak_size = models_bak.size();
     211           19 :             for (int i = 0; i < bak_size; ++i) {
     212           15 :                 model = std::move(models_bak[bak_size - 1 - i]);
     213           15 :                 models_bak.erase(models_bak.end() - 1);
     214           15 :                 models.insert(models.begin(), std::move(model));
     215              :             }
     216              :         }
     217              :         // 8. significances <- significances_bak
     218            5 :         significanceModels = significance_bak;
     219              :         //
     220              :         // Update the significance of the last k models
     221              :         //
     222              :         // 9. Update last k significances
     223           21 :         for (int i = 0; i < k; ++i) {
     224           16 :             significanceModels[n_models_bak - k + i] = alpha_t;
     225              :         }
     226              :         // 10. n_models <- n_models_bak
     227            5 :         n_models = n_models_bak;
     228           10 :         return { weights, alpha_t, terminate };
     229            5 :     }
     230            8 :     std::vector<int> BoostAODE::initializeModels()
     231              :     {
     232            8 :         std::vector<int> featuresUsed;
     233            8 :         torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
     234            8 :         int maxFeatures = 0;
     235            8 :         if (select_features_algorithm == SelectFeatures.CFS) {
     236            2 :             featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
     237            6 :         } else if (select_features_algorithm == SelectFeatures.IWSS) {
     238            3 :             if (threshold < 0 || threshold >0.5) {
     239            2 :                 throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
     240              :             }
     241            1 :             featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
     242            3 :         } else if (select_features_algorithm == SelectFeatures.FCBF) {
     243            3 :             if (threshold < 1e-7 || threshold > 1) {
     244            2 :                 throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
     245              :             }
     246            1 :             featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
     247              :         }
     248            4 :         featureSelector->fit();
     249            4 :         auto cfsFeatures = featureSelector->getFeatures();
     250            4 :         auto scores = featureSelector->getScores();
     251           25 :         for (const int& feature : cfsFeatures) {
     252           21 :             featuresUsed.push_back(feature);
     253           21 :             std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
     254           21 :             model->fit(dataset, features, className, states, weights_);
     255           21 :             models.push_back(std::move(model));
     256           21 :             significanceModels.push_back(1.0); // They will be updated later in trainModel
     257           21 :             n_models++;
     258           21 :         }
     259            4 :         notes.push_back("Used features in initialization: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
     260            4 :         delete featureSelector;
     261            8 :         return featuresUsed;
     262           12 :     }
     263           21 :     void BoostAODE::trainModel(const torch::Tensor& weights)
     264              :     {
     265              :         // Algorithm based on the adaboost algorithm for classification
     266              :         // as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
     267           21 :         fitted = true;
     268           21 :         double alpha_t = 0;
     269           21 :         torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
     270           21 :         bool finished = false;
     271           21 :         std::vector<int> featuresUsed;
     272           21 :         if (selectFeatures) {
     273            8 :             featuresUsed = initializeModels();
     274            4 :             auto ypred = predict(X_train);
     275            4 :             std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
     276              :             // Update significance of the models
     277           25 :             for (int i = 0; i < n_models; ++i) {
     278           21 :                 significanceModels[i] = alpha_t;
     279              :             }
     280            4 :             if (finished) {
     281            0 :                 return;
     282              :             }
     283            4 :         }
     284           17 :         int numItemsPack = 0; // The counter of the models inserted in the current pack
     285              :         // Variables to control the accuracy finish condition
     286           17 :         double priorAccuracy = 0.0;
     287           17 :         double improvement = 1.0;
     288           17 :         double convergence_threshold = 1e-4;
     289           17 :         int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
     290              :         // Step 0: Set the finish condition
     291              :         // epsilon sub t > 0.5 => inverse the weights policy
     292              :         // validation error is not decreasing
     293              :         // run out of features
     294           17 :         bool ascending = order_algorithm == Orders.ASC;
     295           17 :         std::mt19937 g{ 173 };
     296           99 :         while (!finished) {
     297              :             // Step 1: Build ranking with mutual information
     298           82 :             auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
     299           82 :             if (order_algorithm == Orders.RAND) {
     300            9 :                 std::shuffle(featureSelection.begin(), featureSelection.end(), g);
     301              :             }
     302              :             // Remove used features
     303          164 :             featureSelection.erase(remove_if(begin(featureSelection), end(featureSelection), [&](auto x)
     304        10764 :                 { return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed);}),
     305           82 :                 end(featureSelection)
     306              :             );
     307           82 :             int k = pow(2, tolerance);
     308           82 :             int counter = 0; // The model counter of the current pack
     309          197 :             while (counter++ < k && featureSelection.size() > 0) {
     310          115 :                 auto feature = featureSelection[0];
     311          115 :                 featureSelection.erase(featureSelection.begin());
     312          115 :                 std::unique_ptr<Classifier> model;
     313          115 :                 model = std::make_unique<SPODE>(feature);
     314          115 :                 model->fit(dataset, features, className, states, weights_);
     315          115 :                 alpha_t = 0.0;
     316          115 :                 if (!block_update) {
     317           99 :                     auto ypred = model->predict(X_train);
     318              :                     // Step 3.1: Compute the classifier amout of say
     319           99 :                     std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
     320           99 :                 }
     321              :                 // Step 3.4: Store classifier and its accuracy to weigh its future vote
     322          115 :                 numItemsPack++;
     323          115 :                 featuresUsed.push_back(feature);
     324          115 :                 models.push_back(std::move(model));
     325          115 :                 significanceModels.push_back(alpha_t);
     326          115 :                 n_models++;
     327          115 :             }
     328           82 :             if (block_update) {
     329            5 :                 std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
     330              :             }
     331           82 :             if (convergence && !finished) {
     332           49 :                 auto y_val_predict = predict(X_test);
     333           49 :                 double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
     334           49 :                 if (priorAccuracy == 0) {
     335           13 :                     priorAccuracy = accuracy;
     336              :                 } else {
     337           36 :                     improvement = accuracy - priorAccuracy;
     338              :                 }
     339           49 :                 if (improvement < convergence_threshold) {
     340           32 :                     tolerance++;
     341              :                 } else {
     342           17 :                     tolerance = 0; // Reset the counter if the model performs better
     343           17 :                     numItemsPack = 0;
     344              :                 }
     345              :                 // Keep the best accuracy until now as the prior accuracy
     346           49 :                 priorAccuracy = std::max(accuracy, priorAccuracy);
     347              :                 // priorAccuracy = accuracy;
     348           49 :             }
     349           82 :             finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
     350           82 :         }
     351           17 :         if (tolerance > maxTolerance) {
     352            2 :             if (numItemsPack < n_models) {
     353            2 :                 notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
     354           32 :                 for (int i = 0; i < numItemsPack; ++i) {
     355           30 :                     significanceModels.pop_back();
     356           30 :                     models.pop_back();
     357           30 :                     n_models--;
     358              :                 }
     359              :             } else {
     360            0 :                 notes.push_back("Convergence threshold reached & 0 models eliminated");
     361              :             }
     362              :         }
     363           17 :         if (featuresUsed.size() != features.size()) {
     364            2 :             notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()));
     365            2 :             status = WARNING;
     366              :         }
     367           17 :         notes.push_back("Number of models: " + std::to_string(n_models));
     368           25 :     }
     369            1 :     std::vector<std::string> BoostAODE::graph(const std::string& title) const
     370              :     {
     371            1 :         return Ensemble::graph(title);
     372              :     }
     373              : }
        

Generated by: LCOV version 2.0-1

</html>