7.5 KiB
7.5 KiB
<html lang="en">
<head>
</head>
</html>
LCOV - code coverage report | ||||||||||||||||||||||
![]() | ||||||||||||||||||||||
|
||||||||||||||||||||||
![]() |
Line data Source code 1 : // *************************************************************** 2 : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez 3 : // SPDX-FileType: SOURCE 4 : // SPDX-License-Identifier: MIT 5 : // *************************************************************** 6 : 7 : #include "TANLd.h" 8 : 9 : namespace bayesnet { 10 17 : TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {} 11 5 : TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_) 12 : { 13 5 : checkInput(X_, y_); 14 5 : features = features_; 15 5 : className = className_; 16 5 : Xf = X_; 17 5 : y = y_; 18 : // Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y 19 5 : states = fit_local_discretization(y); 20 : // We have discretized the input data 21 : // 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network 22 5 : TAN::fit(dataset, features, className, states); 23 5 : states = localDiscretizationProposal(states, model); 24 5 : return *this; 25 : 26 : } 27 4 : torch::Tensor TANLd::predict(torch::Tensor& X) 28 : { 29 4 : auto Xt = prepareX(X); 30 8 : return TAN::predict(Xt); 31 4 : } 32 1 : std::vector<std::string> TANLd::graph(const std::string& name) const 33 : { 34 1 : return TAN::graph(name); 35 : } 36 : } |
![]() |
Generated by: LCOV version 2.0-1 |
</html>