67 KiB
67 KiB
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<script type="text/javascript" src="clipboard.js"></script>
<script type="text/javascript" src="navtreedata.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="cookie.js"></script>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
</head>
The documentation for this class was generated from the following files:
</html>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt MIT */
var searchBox = new SearchBox("searchBox", "search/",'.html');
/* @license-end */
</script>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt MIT */
$(function() { codefold.init(0); });
/* @license-end */
</script>
<script type="text/javascript" src="menudata.js"></script>
<script type="text/javascript" src="menu.js"></script>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt MIT */
$(function() {
initMenu('',true,false,'search.php','Search',true);
$(function() { init_search(); });
});
/* @license-end */
</script>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt MIT */
$(function(){initNavTree('classbayesnet_1_1_boost.html',''); initResizable(true); });
/* @license-end */
</script>
Loading...
Searching...
No Matches
bayesnet::Boost Class Reference
Inheritance diagram for bayesnet::Boost:
[legend]
Collaboration diagram for bayesnet::Boost:
[legend]
Public Member Functions | |
Boost (bool predict_voting=false) | |
void | setHyperparameters (const nlohmann::json &hyperparameters_) override |
![]() | |
Ensemble (bool predict_voting=true) | |
torch::Tensor | predict (torch::Tensor &X) override |
std::vector< int > | predict (std::vector< std::vector< int > > &X) override |
torch::Tensor | predict_proba (torch::Tensor &X) override |
std::vector< std::vector< double > > | predict_proba (std::vector< std::vector< int > > &X) override |
float | score (torch::Tensor &X, torch::Tensor &y) override |
float | score (std::vector< std::vector< int > > &X, std::vector< int > &y) override |
int | getNumberOfNodes () const override |
int | getNumberOfEdges () const override |
int | getNumberOfStates () const override |
std::vector< std::string > | show () const override |
std::vector< std::string > | graph (const std::string &title) const override |
std::vector< std::string > | topological_order () override |
std::string | dump_cpt () const override |
![]() | |
Classifier (Network model) | |
Classifier & | fit (std::vector< std::vector< int > > &X, std::vector< int > &y, const std::vector< std::string > &features, const std::string &className, std::map< std::string, std::vector< int > > &states) override |
Classifier & | fit (torch::Tensor &X, torch::Tensor &y, const std::vector< std::string > &features, const std::string &className, std::map< std::string, std::vector< int > > &states) override |
Classifier & | fit (torch::Tensor &dataset, const std::vector< std::string > &features, const std::string &className, std::map< std::string, std::vector< int > > &states) override |
Classifier & | fit (torch::Tensor &dataset, const std::vector< std::string > &features, const std::string &className, std::map< std::string, std::vector< int > > &states, const torch::Tensor &weights) override |
void | addNodes () |
int | getClassNumStates () const override |
status_t | getStatus () const override |
std::string | getVersion () override |
std::vector< std::string > | getNotes () const override |
void | setHyperparameters (const nlohmann::json &hyperparameters) override |
![]() | |
std::vector< std::string > & | getValidHyperparameters () |
Protected Member Functions | |
std::vector< int > | featureSelection (torch::Tensor &weights_) |
void | buildModel (const torch::Tensor &weights) override |
std::tuple< torch::Tensor &, double, bool > | update_weights (torch::Tensor &ytrain, torch::Tensor &ypred, torch::Tensor &weights) |
std::tuple< torch::Tensor &, double, bool > | update_weights_block (int k, torch::Tensor &ytrain, torch::Tensor &weights) |
![]() | |
torch::Tensor | predict_average_voting (torch::Tensor &X) |
std::vector< std::vector< double > > | predict_average_voting (std::vector< std::vector< int > > &X) |
torch::Tensor | predict_average_proba (torch::Tensor &X) |
std::vector< std::vector< double > > | predict_average_proba (std::vector< std::vector< int > > &X) |
torch::Tensor | compute_arg_max (torch::Tensor &X) |
std::vector< int > | compute_arg_max (std::vector< std::vector< double > > &X) |
torch::Tensor | voting (torch::Tensor &votes) |
void | trainModel (const torch::Tensor &weights) override |
![]() | |
void | checkFitParameters () |
void | buildDataset (torch::Tensor &y) |
Protected Attributes | |
torch::Tensor | X_train |
torch::Tensor | y_train |
torch::Tensor | X_test |
torch::Tensor | y_test |
bool | bisection = true |
int | maxTolerance = 3 |
std::string | order_algorithm |
bool | convergence = true |
bool | convergence_best = false |
bool | selectFeatures = false |
std::string | select_features_algorithm = Orders.DESC |
FeatureSelect * | featureSelector = nullptr |
double | threshold = -1 |
bool | block_update = false |
![]() | |
unsigned | n_models |
std::vector< std::unique_ptr< Classifier > > | models |
std::vector< double > | significanceModels |
bool | predict_voting |
![]() | |
bool | fitted |
unsigned int | m |
unsigned int | n |
Network | model |
Metrics | metrics |
std::vector< std::string > | features |
std::string | className |
std::map< std::string, std::vector< int > > | states |
torch::Tensor | dataset |
status_t | status = NORMAL |
std::vector< std::string > | notes |
![]() | |
std::vector< std::string > | validHyperparameters |
Detailed Description
Constructor & Destructor Documentation
◆ Boost()
|
explicit |
Member Function Documentation
◆ buildModel()
|
overrideprotectedvirtual |
Implements bayesnet::Classifier.
◆ featureSelection()
|
protected |
◆ setHyperparameters()
|
overridevirtual |
Implements bayesnet::BaseClassifier.
◆ update_weights()
|
protected |
◆ update_weights_block()
|
protected |
Member Data Documentation
◆ bisection
◆ block_update
◆ convergence
◆ convergence_best
◆ featureSelector
|
protected |
◆ maxTolerance
◆ order_algorithm
◆ select_features_algorithm
|
protected |
◆ selectFeatures
◆ threshold
◆ X_test
◆ X_train
◆ y_test
◆ y_train
The documentation for this class was generated from the following files: