25 KiB
25 KiB
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<script type="text/javascript" src="clipboard.js"></script>
<script type="text/javascript" src="navtreedata.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="cookie.js"></script>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
</head>
</html>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt MIT */
var searchBox = new SearchBox("searchBox", "search/",'.html');
/* @license-end */
</script>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt MIT */
$(function() { codefold.init(0); });
/* @license-end */
</script>
<script type="text/javascript" src="menudata.js"></script>
<script type="text/javascript" src="menu.js"></script>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt MIT */
$(function() {
initMenu('',true,false,'search.php','Search',true);
$(function() { init_search(); });
});
/* @license-end */
</script>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt MIT */
$(function(){initNavTree('_node_8cc_source.html',''); initResizable(true); });
/* @license-end */
</script>
Loading...
Searching...
No Matches
Node.cc
65 The variable that minimizes the number of edges that need to be added to the graph to make it triangulated.
66 This is done by counting the number of edges that need to be added to the graph if the variable is eliminated.
82 std::vector<std::pair<std::string, std::string>> Node::combinations(const std::vector<std::string>& source)
93 void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
98 transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
119 cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + weights.index({ n_sample }).item<double>());
129 transform(parents.begin(), parents.end(), std::back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });