1// ***************************************************************
2// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
3// SPDX-FileType: SOURCE
4// SPDX-License-Identifier: MIT
5// ***************************************************************
11 Ensemble::Ensemble(
bool predict_voting) : Classifier(Network()), n_models(0), predict_voting(predict_voting)
15 const std::string ENSEMBLE_NOT_FITTED =
"Ensemble has not been fitted";
16 void Ensemble::trainModel(
const torch::Tensor& weights)
18 n_models = models.size();
19 for (
auto i = 0; i < n_models; ++i) {
20 // fit with std::vectors
21 models[i]->fit(dataset, features, className, states);
24 std::vector<int> Ensemble::compute_arg_max(std::vector<std::vector<double>>& X)
26 std::vector<int> y_pred;
27 for (
auto i = 0; i < X.size(); ++i) {
28 auto max = std::max_element(X[i].begin(), X[i].end());
29 y_pred.push_back(std::distance(X[i].begin(), max));
33 torch::Tensor Ensemble::compute_arg_max(torch::Tensor& X)
35 auto y_pred = torch::argmax(X, 1);
38 torch::Tensor Ensemble::voting(torch::Tensor& votes)
40 // Convert m x n_models tensor to a m x n_class_states with voting probabilities
41 auto y_pred_ = votes.accessor<int, 2>();
42 std::vector<int> y_pred_final;
43 int numClasses = states.at(className).size();
44 // votes is m x n_models with the prediction of every model for each sample
45 auto result = torch::zeros({ votes.size(0), numClasses }, torch::kFloat32);
46 auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
47 for (
int i = 0; i < votes.size(0); ++i) {
48 // n_votes store in each index (value of class) the significance added by each model
49 // i.e. n_votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
50 std::vector<double> n_votes(numClasses, 0.0);
51 for (
int j = 0; j < n_models; ++j) {
52 n_votes[y_pred_[i][j]] += significanceModels.at(j);
54 result[i] = torch::tensor(n_votes);
56 // To only do one division and gain precision
60 std::vector<std::vector<double>> Ensemble::predict_proba(std::vector<std::vector<int>>& X)
63 throw std::logic_error(ENSEMBLE_NOT_FITTED);
65 return predict_voting ? predict_average_voting(X) : predict_average_proba(X);
67 torch::Tensor Ensemble::predict_proba(torch::Tensor& X)
70 throw std::logic_error(ENSEMBLE_NOT_FITTED);
72 return predict_voting ? predict_average_voting(X) : predict_average_proba(X);
74 std::vector<int> Ensemble::predict(std::vector<std::vector<int>>& X)
76 auto res = predict_proba(X);
77 return compute_arg_max(res);
79 torch::Tensor Ensemble::predict(torch::Tensor& X)
81 auto res = predict_proba(X);
82 return compute_arg_max(res);
84 torch::Tensor Ensemble::predict_average_proba(torch::Tensor& X)
86 auto n_states = models[0]->getClassNumStates();
87 torch::Tensor y_pred = torch::zeros({ X.size(1), n_states }, torch::kFloat32);
88 auto threads{ std::vector<std::thread>() };
90 for (
auto i = 0; i < n_models; ++i) {
91 threads.push_back(std::thread([&, i]() {
92 auto ypredict = models[i]->predict_proba(X);
93 std::lock_guard<std::mutex> lock(mtx);
94 y_pred += ypredict * significanceModels[i];
97 for (
auto& thread : threads) {
100 auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
104 std::vector<std::vector<double>> Ensemble::predict_average_proba(std::vector<std::vector<int>>& X)
106 auto n_states = models[0]->getClassNumStates();
107 std::vector<std::vector<double>> y_pred(X[0].size(), std::vector<double>(n_states, 0.0));
108 auto threads{ std::vector<std::thread>() };
110 for (
auto i = 0; i < n_models; ++i) {
111 threads.push_back(std::thread([&, i]() {
112 auto ypredict = models[i]->predict_proba(X);
113 assert(ypredict.size() == y_pred.size());
114 assert(ypredict[0].size() == y_pred[0].size());
115 std::lock_guard<std::mutex> lock(mtx);
116 // Multiply each prediction by the significance of the model and then add it to the final prediction
117 for (
auto j = 0; j < ypredict.size(); ++j) {
118 std::transform(y_pred[j].begin(), y_pred[j].end(), ypredict[j].begin(), y_pred[j].begin(),
119 [significanceModels = significanceModels[i]](
double x,
double y) {
return x + y * significanceModels; });
123 for (
auto& thread : threads) {
126 auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
127 //Divide each element of the prediction by the sum of the significances
128 for (
auto j = 0; j < y_pred.size(); ++j) {
129 std::transform(y_pred[j].begin(), y_pred[j].end(), y_pred[j].begin(), [sum](
double x) {
return x / sum; });
133 std::vector<std::vector<double>> Ensemble::predict_average_voting(std::vector<std::vector<int>>& X)
135 torch::Tensor Xt = bayesnet::vectorToTensor(X,
false);
136 auto y_pred = predict_average_voting(Xt);
137 std::vector<std::vector<double>> result = tensorToVectorDouble(y_pred);
140 torch::Tensor Ensemble::predict_average_voting(torch::Tensor& X)
142 // Build a m x n_models tensor with the predictions of each model
143 torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
144 auto threads{ std::vector<std::thread>() };
146 for (
auto i = 0; i < n_models; ++i) {
147 threads.push_back(std::thread([&, i]() {
148 auto ypredict = models[i]->predict(X);
149 std::lock_guard<std::mutex> lock(mtx);
150 y_pred.index_put_({
"...", i }, ypredict);
153 for (
auto& thread : threads) {
156 return voting(y_pred);
158 float Ensemble::score(torch::Tensor& X, torch::Tensor& y)
160 auto y_pred = predict(X);
162 for (
int i = 0; i < y_pred.size(0); ++i) {
163 if (y_pred[i].item<int>() == y[i].item<int>()) {
167 return (
double)correct / y_pred.size(0);
169 float Ensemble::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
171 auto y_pred = predict(X);
173 for (
int i = 0; i < y_pred.size(); ++i) {
174 if (y_pred[i] == y[i]) {
178 return (
double)correct / y_pred.size();
180 std::vector<std::string> Ensemble::show()
const
182 auto result = std::vector<std::string>();
183 for (
auto i = 0; i < n_models; ++i) {
184 auto res = models[i]->show();
185 result.insert(result.end(), res.begin(), res.end());
189 std::vector<std::string> Ensemble::graph(
const std::string& title)
const
191 auto result = std::vector<std::string>();
192 for (
auto i = 0; i < n_models; ++i) {
193 auto res = models[i]->graph(title +
"_" + std::to_string(i));
194 result.insert(result.end(), res.begin(), res.end());
198 int Ensemble::getNumberOfNodes()
const
201 for (
auto i = 0; i < n_models; ++i) {
202 nodes += models[i]->getNumberOfNodes();
206 int Ensemble::getNumberOfEdges()
const
209 for (
auto i = 0; i < n_models; ++i) {
210 edges += models[i]->getNumberOfEdges();
214 int Ensemble::getNumberOfStates()
const
217 for (
auto i = 0; i < n_models; ++i) {
218 nstates += models[i]->getNumberOfStates();